Modeling Si/SiGe quantum dot variability induced by interface disorder reconstructed from multiperspective microscopy

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-03-27 DOI:10.1038/s41534-024-00827-8
Luis Fabián Peña, Justine C. Koepke, Joseph Houston Dycus, Andrew Mounce, Andrew D. Baczewski, N. Tobias Jacobson, Ezra Bussmann
{"title":"Modeling Si/SiGe quantum dot variability induced by interface disorder reconstructed from multiperspective microscopy","authors":"Luis Fabián Peña, Justine C. Koepke, Joseph Houston Dycus, Andrew Mounce, Andrew D. Baczewski, N. Tobias Jacobson, Ezra Bussmann","doi":"10.1038/s41534-024-00827-8","DOIUrl":null,"url":null,"abstract":"<p>SiGe heteroepitaxial growth yields pristine host material for quantum dot qubits, but residual interface disorder can lead to qubit-to-qubit variability that might pose an obstacle to reliable SiGe-based quantum computing. By convolving data from scanning tunneling microscopy and high-angle annular dark field scanning transmission electron microscopy, we reconstruct 3D interfacial atomic structure and employ an atomistic multi-valley effective mass theory to quantify qubit spectral variability. The results indicate (1) appreciable valley splitting (VS) variability of ~50% owing to alloy disorder and (2) roughness-induced double-dot detuning bias energy variability of order 1–10 meV depending on well thickness. For measured intermixing, atomic steps have negligible influence on VS, and uncorrelated roughness causes spatially fluctuating energy biases in double-dot detunings potentially incorrectly attributed to charge disorder. Our approach yields atomic structure spanning orders of magnitude larger areas than post-growth microscopy or tomography alone, enabling more holistic predictions of disorder-induced qubit variability.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"13 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00827-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SiGe heteroepitaxial growth yields pristine host material for quantum dot qubits, but residual interface disorder can lead to qubit-to-qubit variability that might pose an obstacle to reliable SiGe-based quantum computing. By convolving data from scanning tunneling microscopy and high-angle annular dark field scanning transmission electron microscopy, we reconstruct 3D interfacial atomic structure and employ an atomistic multi-valley effective mass theory to quantify qubit spectral variability. The results indicate (1) appreciable valley splitting (VS) variability of ~50% owing to alloy disorder and (2) roughness-induced double-dot detuning bias energy variability of order 1–10 meV depending on well thickness. For measured intermixing, atomic steps have negligible influence on VS, and uncorrelated roughness causes spatially fluctuating energy biases in double-dot detunings potentially incorrectly attributed to charge disorder. Our approach yields atomic structure spanning orders of magnitude larger areas than post-growth microscopy or tomography alone, enabling more holistic predictions of disorder-induced qubit variability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多视角显微镜重构由界面紊乱诱发的硅/硅锗量子点变化模型
硅锗异质外延生长为量子点量子比特提供了原始的宿主材料,但残留的界面紊乱会导致量子比特间的变异,这可能会对基于硅锗的可靠量子计算构成障碍。通过融合扫描隧道显微镜和高角度环形暗场扫描透射电子显微镜的数据,我们重建了三维界面原子结构,并采用原子论多谷有效质量理论来量化量子比特光谱变异性。结果表明:(1) 由于合金无序,谷分裂 (VS) 的可观变化约为 50%;(2) 粗糙度引起的双点失谐偏置能量变化约为 1-10 meV,这取决于阱的厚度。对于测量到的混合物,原子阶梯对 VS 的影响可以忽略不计,而不相关的粗糙度会导致双点失谐的空间波动能量偏差,这可能会被错误地归因于电荷失调。与生长后显微镜或层析成像法相比,我们的方法能获得更大范围的原子结构,从而能更全面地预测无序诱导的量子比特变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Characterizing coherent errors using matrix-element amplification Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon Local testability of distance-balanced quantum codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1