Hanh Thi Hong Tran, Matej Martinc, Andraz Repar, Nikola Ljubešić, Antoine Doucet, Senja Pollak
{"title":"Can cross-domain term extraction benefit from cross-lingual transfer and nested term labeling?","authors":"Hanh Thi Hong Tran, Matej Martinc, Andraz Repar, Nikola Ljubešić, Antoine Doucet, Senja Pollak","doi":"10.1007/s10994-023-06506-7","DOIUrl":null,"url":null,"abstract":"<p>Automatic term extraction (ATE) is a natural language processing task that eases the effort of manually identifying terms from domain-specific corpora by providing a list of candidate terms. In this paper, we treat ATE as a sequence-labeling task and explore the efficacy of XLMR in evaluating cross-lingual and multilingual learning against monolingual learning in the cross-domain ATE context. Additionally, we introduce NOBI, a novel annotation mechanism enabling the labeling of single-word nested terms. Our experiments are conducted on the ACTER corpus, encompassing four domains and three languages (English, French, and Dutch), as well as the RSDO5 Slovenian corpus, encompassing four additional domains. Results indicate that cross-lingual and multilingual models outperform monolingual settings, showcasing improved F1-scores for all languages within the ACTER dataset. When incorporating an additional Slovenian corpus into the training set, the multilingual model exhibits superior performance compared to state-of-the-art approaches in specific scenarios. Moreover, the newly introduced NOBI labeling mechanism enhances the classifier’s capacity to extract short nested terms significantly, leading to substantial improvements in Recall for the ACTER dataset and consequentially boosting the overall F1-score performance.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"32 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-023-06506-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic term extraction (ATE) is a natural language processing task that eases the effort of manually identifying terms from domain-specific corpora by providing a list of candidate terms. In this paper, we treat ATE as a sequence-labeling task and explore the efficacy of XLMR in evaluating cross-lingual and multilingual learning against monolingual learning in the cross-domain ATE context. Additionally, we introduce NOBI, a novel annotation mechanism enabling the labeling of single-word nested terms. Our experiments are conducted on the ACTER corpus, encompassing four domains and three languages (English, French, and Dutch), as well as the RSDO5 Slovenian corpus, encompassing four additional domains. Results indicate that cross-lingual and multilingual models outperform monolingual settings, showcasing improved F1-scores for all languages within the ACTER dataset. When incorporating an additional Slovenian corpus into the training set, the multilingual model exhibits superior performance compared to state-of-the-art approaches in specific scenarios. Moreover, the newly introduced NOBI labeling mechanism enhances the classifier’s capacity to extract short nested terms significantly, leading to substantial improvements in Recall for the ACTER dataset and consequentially boosting the overall F1-score performance.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.