Experimentally Closing the Balance of Progress of Reaction in Premixed Turbulent Combustion in the Thin Flame Regime

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2024-03-25 DOI:10.1007/s10494-024-00538-2
Yutao Zheng, Lee Weller, Simone Hochgreb
{"title":"Experimentally Closing the Balance of Progress of Reaction in Premixed Turbulent Combustion in the Thin Flame Regime","authors":"Yutao Zheng, Lee Weller, Simone Hochgreb","doi":"10.1007/s10494-024-00538-2","DOIUrl":null,"url":null,"abstract":"<p>We investigate the possibility of determining the local turbulent flame speed by measuring the individual terms in the balance of a mean progress of reaction variable for the case of a low turbulence methane-air Bunsen flame in the thin flame regime. Velocity distributions and flame edge positions were measured by particle image velocimetry techniques at 3 kHz for a flame stabilized by a surrounding pilot of the same stoichiometry, for a turbulent Reynolds number around 66 and Karlovitz numbers of the order of 4. The conservation equation for mean progress variable was analyzed along different streamlines as a balance of terms expressed as velocities, including terms for convection, turbulent diffusion, mean reaction, and turbulent and molecular diffusion. Each term was estimated from local velocities and flame locations using a thin flame approximation, and their uncertainty was evaluated based on propagation of experimentally measured statistical correlations. The largest terms were the convective and reaction terms, as expected, with smaller roles for turbulent and molecular diffusion across the flame brush. Countergradient diffusion and transition to gradient diffusion were observed across the flame brush. Closure of the balance of terms in the conservation equations using independently measured terms was not consistently achieved across the flame brush within the reckoned uncertainties, arriving at a balance within 20–30% of the absolute value. Testable hypotheses are offered for the possible reasons for the mismatch, including the role of spatial filtering and 3D effects on the reaction rate term. Finally, the experiments identify the inaccuracies in measuring a true local turbulent flame speed, and suggest a consistent methodology to reduce errors in such estimations. This is the first time such a detailed experimental closure is attempted for any configuration. The results suggest that the significant improvements in spatial resolution are necessary for a full closure.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10494-024-00538-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the possibility of determining the local turbulent flame speed by measuring the individual terms in the balance of a mean progress of reaction variable for the case of a low turbulence methane-air Bunsen flame in the thin flame regime. Velocity distributions and flame edge positions were measured by particle image velocimetry techniques at 3 kHz for a flame stabilized by a surrounding pilot of the same stoichiometry, for a turbulent Reynolds number around 66 and Karlovitz numbers of the order of 4. The conservation equation for mean progress variable was analyzed along different streamlines as a balance of terms expressed as velocities, including terms for convection, turbulent diffusion, mean reaction, and turbulent and molecular diffusion. Each term was estimated from local velocities and flame locations using a thin flame approximation, and their uncertainty was evaluated based on propagation of experimentally measured statistical correlations. The largest terms were the convective and reaction terms, as expected, with smaller roles for turbulent and molecular diffusion across the flame brush. Countergradient diffusion and transition to gradient diffusion were observed across the flame brush. Closure of the balance of terms in the conservation equations using independently measured terms was not consistently achieved across the flame brush within the reckoned uncertainties, arriving at a balance within 20–30% of the absolute value. Testable hypotheses are offered for the possible reasons for the mismatch, including the role of spatial filtering and 3D effects on the reaction rate term. Finally, the experiments identify the inaccuracies in measuring a true local turbulent flame speed, and suggest a consistent methodology to reduce errors in such estimations. This is the first time such a detailed experimental closure is attempted for any configuration. The results suggest that the significant improvements in spatial resolution are necessary for a full closure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
薄火焰区预混合湍流燃烧中反应进展平衡的实验关闭
我们研究了通过测量反应变量平均进度平衡中的各个项来确定局部湍流火焰速度的可能性,该反应变量为薄火焰状态下的低湍流甲烷-空气本生焰。通过粒子图像测速仪技术,以 3 kHz 的频率测量了相同化学计量的周围先导稳定火焰的速度分布和火焰边缘位置,湍流雷诺数约为 66,卡尔洛维茨数为 4。每个项都是利用薄火焰近似法根据局部速度和火焰位置估算的,其不确定性根据实验测量的统计相关性进行评估。正如预期的那样,最大的项是对流和反应项,火焰刷上的湍流和分子扩散项作用较小。在火焰刷上观察到了逆梯度扩散和向梯度扩散的过渡。使用独立测量的项对守恒方程中的项的平衡进行闭合时,在火焰刷上并不能在计算的不确定性范围内一致地实现平衡,平衡的绝对值在 20-30% 之间。对于不匹配的可能原因,包括空间过滤的作用和反应速率项的三维效应,提出了可检验的假设。最后,实验确定了测量真实局部湍流火焰速度的误差,并提出了减少此类估计误差的一致方法。这是首次尝试对任何配置进行如此详细的实验封闭。结果表明,空间分辨率的显著提高是完全封闭所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
Spatial Averaging Effects in Adverse Pressure Gradient Turbulent Boundary Layers LES of Biomass Syngas Combustion in a Swirl Stabilised Burner: Model Validation and Predictions A Comparison of Evaluation Methodologies of the Fractal Dimension of Premixed Turbulent Flames in 2D and 3D Using Direct Numerical Simulation Data Instability Modes and Scaling Analysis During Electro-Hydro-Dynamic-Atomization: Theoretical and Experimental Study Assessment of Wall Modeling With Adverse Pressure Gradient for High Reynolds Number Separated Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1