An underlying factor of increasing early winter precipitation in the Hokuriku region of Japan in recent decades

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2024-03-25 DOI:10.1002/asl.1229
Kazuto Takemura, Shuhei Maeda, Ryuichi Kawamura
{"title":"An underlying factor of increasing early winter precipitation in the Hokuriku region of Japan in recent decades","authors":"Kazuto Takemura,&nbsp;Shuhei Maeda,&nbsp;Ryuichi Kawamura","doi":"10.1002/asl.1229","DOIUrl":null,"url":null,"abstract":"<p>Using a reanalysis dataset and large-ensemble simulation results, this study examines a possible factor of increasing trend in early winter precipitation in recent decades in the Hokuriku region of Japan. Monthly precipitation in December has a significant increasing trend after the early 1990s, which is different from those in January and February. The increasing precipitation in December is related to that in the sea surface upward latent heat flux due to intensified winter monsoon circulation and warming sea surface temperatures (SSTs) over the Sea of Japan. December averaged SSTs show a trend pattern in recent decades that is similar to the negative phase of the interdecadal Pacific oscillation (IPO), accompanied by positive trends from the eastern Indian Ocean to the western tropical Pacific. The enhanced trend of convection over the Bay of Bengal is seen; suggesting a combined effect of climatologically high SSTs and IPO-related warmed SSTs over the region. Trends in recent decades of an upper-level wavy pattern from South Asia to near Japan along the subtropical jet associated with enhanced convection near the Bay of Bengal and the related pressure drop from Japan to the north are seen, which contribute to intensified winter monsoon circulation.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1229","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1229","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Using a reanalysis dataset and large-ensemble simulation results, this study examines a possible factor of increasing trend in early winter precipitation in recent decades in the Hokuriku region of Japan. Monthly precipitation in December has a significant increasing trend after the early 1990s, which is different from those in January and February. The increasing precipitation in December is related to that in the sea surface upward latent heat flux due to intensified winter monsoon circulation and warming sea surface temperatures (SSTs) over the Sea of Japan. December averaged SSTs show a trend pattern in recent decades that is similar to the negative phase of the interdecadal Pacific oscillation (IPO), accompanied by positive trends from the eastern Indian Ocean to the western tropical Pacific. The enhanced trend of convection over the Bay of Bengal is seen; suggesting a combined effect of climatologically high SSTs and IPO-related warmed SSTs over the region. Trends in recent decades of an upper-level wavy pattern from South Asia to near Japan along the subtropical jet associated with enhanced convection near the Bay of Bengal and the related pressure drop from Japan to the north are seen, which contribute to intensified winter monsoon circulation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近几十年来日本北陆地区初冬降水量不断增加的一个基本因素
本研究利用再分析数据集和大集合模拟结果,探讨了近几十年来日本北陆地区初冬降水量呈上升趋势的可能因素。自 20 世纪 90 年代初以来,12 月的月降水量呈显著增加趋势,这与 1 月和 2 月的月降水量不同。12 月降水量的增加与冬季季风环流加强和日本海海面温度变暖导致的海面上升潜热通量有关。近几十年来,12 月平均海表温度的趋势模式与年代际太平洋涛动(IPO)的负相类似,同时从东印度洋到西热带太平洋呈现正趋势。孟加拉湾对流的增强趋势表明,该地区受到气候学上的高海温和与 IPO 相关的变暖海温的共同影响。近几十年来,从南亚到日本附近沿副热带喷流出现了高空波浪式模式,孟加拉湾附近对流增强,日本向北气压下降,这些都有助于冬季季风环流的加强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information A simple subtropical high‐pressure system index over the South Atlantic Towards replacing precipitation ensemble predictions systems using machine learning Accuracy of daily extreme air temperatures under natural variations in thermometer screen ventilation Changing dynamics of Western European summertime cut‐off lows: A case study of the July 2021 flood event
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1