Characteristics of Emission Non-nulling Pulsars Through Simulation

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Research in Astronomy and Astrophysics Pub Date : 2024-03-27 DOI:10.1088/1674-4527/ad2ee0
Rai Yuen
{"title":"Characteristics of Emission Non-nulling Pulsars Through Simulation","authors":"Rai Yuen","doi":"10.1088/1674-4527/ad2ee0","DOIUrl":null,"url":null,"abstract":"We investigate the population and several properties of radio pulsars whose emission does not null (non-nulling) through simulation of a large pulsar sample. Emission from a pulsar is identified as non-nulling if (i) the emission does not cease across the whole pulse profile, and (ii) the emission is detectable. For (i), we adopt a model for switching in the plasma charge density, and emission persists if the charge density is non-zero. For (ii), we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight. We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42.°5, and almost half the samples maintain a duty cycle between 0.05 and 0.2. Furthermore, the pulsar population is not fixed but dependent on the obliquity angle, with the population peaking at 20°. In addition, three evolutionary phases are identified in the pulsar population as the obliquity angle evolves, with the majority of samples having an obliquity angle between 20° and 65°. Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"56 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad2ee0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the population and several properties of radio pulsars whose emission does not null (non-nulling) through simulation of a large pulsar sample. Emission from a pulsar is identified as non-nulling if (i) the emission does not cease across the whole pulse profile, and (ii) the emission is detectable. For (i), we adopt a model for switching in the plasma charge density, and emission persists if the charge density is non-zero. For (ii), we assume that detectable emission originates from source points where it is emitted tangentially to the magnetic field-line and parallel to the line-of-sight. We find that pulsars exhibiting non-nulling emission possess obliquity angles with an average of 42.°5, and almost half the samples maintain a duty cycle between 0.05 and 0.2. Furthermore, the pulsar population is not fixed but dependent on the obliquity angle, with the population peaking at 20°. In addition, three evolutionary phases are identified in the pulsar population as the obliquity angle evolves, with the majority of samples having an obliquity angle between 20° and 65°. Our results also suggest that emission from a pulsar may evolve between nulling and non-nulling during its lifetime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过模拟发现发射非无效脉冲星的特征
我们通过对大量脉冲星样本的模拟,研究了发射不归零(非归零)的射电脉冲星的数量和一些特性。如果(i)脉冲星的发射在整个脉冲剖面上没有停止,以及(ii)发射可以被探测到,那么该脉冲星的发射就被认定为非空。对于(i),我们采用等离子体电荷密度切换模型,如果电荷密度不为零,发射就会持续。对于(ii),我们假定可探测到的辐射来自与磁场线相切、与视线平行的发射源点。我们发现,表现出非空发射的脉冲星的斜角平均为 42.°5,几乎一半的样本的占空比保持在 0.05 到 0.2 之间。此外,脉冲星的数量并不固定,而是取决于倾角,其数量在 20°时达到峰值。此外,随着斜角的变化,脉冲星群也出现了三个演化阶段,大多数样本的斜角在 20° 和 65° 之间。我们的结果还表明,脉冲星的发射在其生命周期内可能会在空化和非空化之间演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Astronomy and Astrophysics
Research in Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
3.20
自引率
16.70%
发文量
2599
审稿时长
6.0 months
期刊介绍: Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics: -large-scale structure of universe formation and evolution of galaxies- high-energy and cataclysmic processes in astrophysics- formation and evolution of stars- astrogeodynamics- solar magnetic activity and heliogeospace environments- dynamics of celestial bodies in the solar system and artificial bodies- space observation and exploration- new astronomical techniques and methods
期刊最新文献
Comparison of NH3 and 12CO, 13CO, C18O Molecular Lines in the Aquila Rift Cloud Complex SFNet: Stellar Feature Network with CWT for Stellar Spectra Recognition A Study of the Comets with Large Perihelion Distances C/2019 L3 (ATLAS) and C/2019 O3 (Palomar) Understanding the Impact of H2 Diffusion Energy on the Formation Efficiency of H2 on the Interstellar Dust Grain Surface Leveraging the Empirical Wavelet Transform in Combination with Convolutional LSTM Neural Networks to Enhance the Accuracy of Polar Motion Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1