First-principles study on the effect of point defects on the magnetic new mechanism and optical properties of the GaN:Be/Mg/Ca system

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-03-08 DOI:10.1088/1361-651x/ad2d69
Qingyu Hou, Mude Qi, Cong Li
{"title":"First-principles study on the effect of point defects on the magnetic new mechanism and optical properties of the GaN:Be/Mg/Ca system","authors":"Qingyu Hou, Mude Qi, Cong Li","doi":"10.1088/1361-651x/ad2d69","DOIUrl":null,"url":null,"abstract":"The new magnetic mechanism and optical properties of Ga vacancies and H<sub>i</sub> interstitial in the GaN: Be/Mg/Ca system have not been fully understood, and the use of first principles can solve this problem. The effect of point defects on the magnetic mechanism and optical properties of the GaN: Be/Mg/Ca system was investigated using the first nature principle of the hybridized generalized HSE06 method. Results show that all doped systems have N<sup>2−</sup> ions in addition to N<sup>3−</sup> ions, and N<sup>2−</sup> ions have the dual property of itinerant electrons in the off-domain (donor) and of local electrons (acceptor). The magnetism of magnetic doped systems is generated by the hybrid coupling of Ga4s and N<sup>2−</sup> 2p states. In comparison with the Ga<sub>34</sub>MN<sub>36</sub> (M = Be/Ca) system, the magnetic moments of Ga<sub>34</sub>MH<sub>i</sub>N<sub>36</sub> (M = Be/Ca) system are reduced after doping with H<sub>i</sub> interstitial. The magnetic properties of the Ga<sub>34</sub>MgN<sub>36</sub> system can be regulated by the presence or absence of H<sub>i</sub> interstitial, which is advantageous as a magnetic switch. The absorption spectral distribution of the Ga<sub>34</sub>MgH<sub>i</sub>N<sub>36</sub> system extends to the mid-infrared optical region. This material has some reference value as infrared thermophotovoltaic cells, infrared photodetectors, or infrared semiconductor lasers.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"30 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad2d69","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The new magnetic mechanism and optical properties of Ga vacancies and Hi interstitial in the GaN: Be/Mg/Ca system have not been fully understood, and the use of first principles can solve this problem. The effect of point defects on the magnetic mechanism and optical properties of the GaN: Be/Mg/Ca system was investigated using the first nature principle of the hybridized generalized HSE06 method. Results show that all doped systems have N2− ions in addition to N3− ions, and N2− ions have the dual property of itinerant electrons in the off-domain (donor) and of local electrons (acceptor). The magnetism of magnetic doped systems is generated by the hybrid coupling of Ga4s and N2− 2p states. In comparison with the Ga34MN36 (M = Be/Ca) system, the magnetic moments of Ga34MHiN36 (M = Be/Ca) system are reduced after doping with Hi interstitial. The magnetic properties of the Ga34MgN36 system can be regulated by the presence or absence of Hi interstitial, which is advantageous as a magnetic switch. The absorption spectral distribution of the Ga34MgHiN36 system extends to the mid-infrared optical region. This material has some reference value as infrared thermophotovoltaic cells, infrared photodetectors, or infrared semiconductor lasers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点缺陷对 GaN:Be/Mg/Ca 系统磁新机制和光学特性影响的第一性原理研究
人们对 GaN:Be/Mg/Ca 体系中 Ga 空位和 Hi 间隙的新磁机制和光学性质还没有完全了解,而利用第一性原理可以解决这个问题。利用杂化广义 HSE06 方法的第一性原理研究了点缺陷对 GaN:Be/Mg/Ca 体系的磁机制和光学性质的影响。结果表明,所有掺杂体系中除了 N3- 离子外,还有 N2- 离子,N2- 离子具有离域巡回电子(供体)和局部电子(受体)的双重特性。掺磁系统的磁性是由 Ga4s 和 N2- 2p 态的混合耦合产生的。与 Ga34MN36(M = Be/Ca)体系相比,Ga34MHiN36(M = Be/Ca)体系在掺杂 Hi 中间体后磁矩减小。Ga34MgN36 体系的磁性能可以通过 Hi 中间体的存在或不存在来调节,这对于磁开关来说是非常有利的。Ga34MgHiN36 系统的吸收光谱分布延伸至中红外光区。这种材料作为红外热光电池、红外光探测器或红外半导体激光器具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Major Amputation In Non-Healing Ulcers: Outcomes and Economic Issues. Data from a Cohort of Patients with Diabetic Foot Ulcers. Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1