{"title":"A mathematical model of thermoplastic elastomers for analysing the topology of microstructures and mechanical properties during elongation","authors":"Hiroki Kodama, Hiroshi Morita, Motoko Kotani","doi":"10.1098/rspa.2023.0389","DOIUrl":null,"url":null,"abstract":"<p>In this study, a mathematical model based on graph theory is developed to analyse the deformed structures and mechanical properties of thermoplastic elastomers (TPEs) using ABA-type triblock copolymers. TPEs exhibit a network structure formed by bridge chains; deformation of this network structure causes stress. During the deformation of TPEs, domain breakage and coalescence occur, accompanied by topological changes in the chains, such as conformational transitions between the bridge and loop chains. By employing the mathematical concepts of harmonic realization of graphs in the physical space and the tension tensor to quantify the stress in the bridge-chain network structure, an effective method for analysing topologicalchanges in microstructures caused by elongation is proposed. As an application of this method, optimal geometric structures of block copolymers with desired functionalities can be determined.</p>","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0389","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a mathematical model based on graph theory is developed to analyse the deformed structures and mechanical properties of thermoplastic elastomers (TPEs) using ABA-type triblock copolymers. TPEs exhibit a network structure formed by bridge chains; deformation of this network structure causes stress. During the deformation of TPEs, domain breakage and coalescence occur, accompanied by topological changes in the chains, such as conformational transitions between the bridge and loop chains. By employing the mathematical concepts of harmonic realization of graphs in the physical space and the tension tensor to quantify the stress in the bridge-chain network structure, an effective method for analysing topologicalchanges in microstructures caused by elongation is proposed. As an application of this method, optimal geometric structures of block copolymers with desired functionalities can be determined.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.