NBI optimization on SMART and implications for scenario development

IF 2.1 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Plasma Physics and Controlled Fusion Pub Date : 2024-03-11 DOI:10.1088/1361-6587/ad2edc
M Podestà, D J Cruz-Zabala, F M Poli, J Dominguez-Palacios, J W Berkery, M Garcia-Muñoz, E Viezzer, A Mancini, J Segado, L Velarde, S M Kaye
{"title":"NBI optimization on SMART and implications for scenario development","authors":"M Podestà, D J Cruz-Zabala, F M Poli, J Dominguez-Palacios, J W Berkery, M Garcia-Muñoz, E Viezzer, A Mancini, J Segado, L Velarde, S M Kaye","doi":"10.1088/1361-6587/ad2edc","DOIUrl":null,"url":null,"abstract":"The SMall Aspect Ratio Tokamak (SMART) under commissioning at the University of Seville, Spain, aims to explore confinement properties and possible advantages in confinement for compact/spherical tokamaks operating at negative vs. positive triangularity. This work explores the benefits of auxiliary heating through Neutral Beam Injection (NBI) for SMART scenarios beyond the initial Ohmic phase of operations, in support of the device’s mission. Expected values of electron and ion temperature achievable with NBI heating are first predicted for the current flat-top phase, including modeling to optimize the NBI injection geometry to maximize NBI absorption and minimize losses for a given equilibrium. Simulations are then extended for a selected case to cover the current ramp-up phase. Differences with results obtained for the flat-top phase indicate the importance of determining the plasma evolution over time, as well as self-consistently determining the edge plasma parameters for reliable time-dependent simulations. Initial simulation results indicate the advantage of auxiliary NBI heating to achieve nearly double values of pressure and stored energy compared to Ohmic discharges, thus significantly increasing the device’s performance. The scenarios developed in this work will also contribute to diagnostic development and optimization for SMART, as well as providing test cases for initial predictions of macro- and micro-instabilities.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"152 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad2edc","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The SMall Aspect Ratio Tokamak (SMART) under commissioning at the University of Seville, Spain, aims to explore confinement properties and possible advantages in confinement for compact/spherical tokamaks operating at negative vs. positive triangularity. This work explores the benefits of auxiliary heating through Neutral Beam Injection (NBI) for SMART scenarios beyond the initial Ohmic phase of operations, in support of the device’s mission. Expected values of electron and ion temperature achievable with NBI heating are first predicted for the current flat-top phase, including modeling to optimize the NBI injection geometry to maximize NBI absorption and minimize losses for a given equilibrium. Simulations are then extended for a selected case to cover the current ramp-up phase. Differences with results obtained for the flat-top phase indicate the importance of determining the plasma evolution over time, as well as self-consistently determining the edge plasma parameters for reliable time-dependent simulations. Initial simulation results indicate the advantage of auxiliary NBI heating to achieve nearly double values of pressure and stored energy compared to Ohmic discharges, thus significantly increasing the device’s performance. The scenarios developed in this work will also contribute to diagnostic development and optimization for SMART, as well as providing test cases for initial predictions of macro- and micro-instabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
国家履行机构对 SMART 的优化及其对设想方案制定的影响
西班牙塞维利亚大学正在试运行的小长径比托卡马克(SMART)旨在探索在负三角形与正三角形下运行的紧凑型/球形托卡马克的约束特性和可能的约束优势。这项工作探索了通过中性束注入(NBI)对 SMART 方案进行辅助加热的好处,以支持该设备在运行初期的欧姆阶段之外的任务。首先预测了当前平顶阶段通过 NBI 加热可达到的电子和离子温度预期值,包括优化 NBI 注入几何形状的建模,以便在给定平衡下最大限度地吸收 NBI 并减少损耗。然后对选定的情况进行扩展模拟,以涵盖当前的升温阶段。与平顶阶段所得结果的差异表明,确定等离子体随时间的演变以及自洽地确定边缘等离子体参数对于可靠的随时间变化的模拟非常重要。初步模拟结果表明,与欧姆放电相比,辅助 NBI 加热具有实现近两倍压力值和存储能量的优势,从而显著提高了设备的性能。这项工作中开发的方案还将有助于 SMART 的诊断开发和优化,并为宏观和微观不稳定性的初步预测提供测试案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Physics and Controlled Fusion
Plasma Physics and Controlled Fusion 物理-物理:核物理
CiteScore
4.50
自引率
13.60%
发文量
224
审稿时长
4.5 months
期刊介绍: Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods. Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.
期刊最新文献
Reduced order modeling for real-time monitoring of structural displacements due to electromagnetic forces in large scale tokamaks He II line intensity measurements in the JET tokamak Sheath constraints on turbulent magnetised plasmas Vertical instability forecasting and controllability assessment of multi-device tokamak plasmas in DECAF with data-driven optimization Identifying L-H transition in HL-2A through deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1