{"title":"Foraging by larval fish: a full stomach is indicative of high performance but random encounters with prey are also important","authors":"Pierre Pepin","doi":"10.1093/icesjms/fsae037","DOIUrl":null,"url":null,"abstract":"This study contrasts diet composition patterns of larval fish categorized as strong and weak foragers, identified from quadratic relationships between larval length and the number of prey eaten, for 11 fish species. Two sets of alternative hypotheses test whether strong foragers (1) exhibit precocious behaviour by eating later developmental stages of copepods, and (2) take advantage of random encounters with zooplankton, based on the contrast between the two categories in each 1 mm length-class. Results indicate that strong foragers shift their feeding toward earlier copepod developmental stages, which was most apparent in four flatfish species, and demonstrate stronger overall prey selectivity than weak foragers. Inverse modeling revealed the latter is achieved through increases in apparent prey perception and/or responsiveness to dominant prey types (i.e. nauplii and copepodites) and declines for less frequent prey (e.g. veliger and Cladocera). Foraging strength increased modestly with larger eye diameter and mouth gape. Two possible explanations for prey selection patterns are that strong foragers have inherently different capacity to perceive and attack prey, or that after initially eating sufficient large prey to meet metabolic requirements fuller stomachs depend on the ability of larval fish to take advantage of random encounters.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"40 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsae037","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
This study contrasts diet composition patterns of larval fish categorized as strong and weak foragers, identified from quadratic relationships between larval length and the number of prey eaten, for 11 fish species. Two sets of alternative hypotheses test whether strong foragers (1) exhibit precocious behaviour by eating later developmental stages of copepods, and (2) take advantage of random encounters with zooplankton, based on the contrast between the two categories in each 1 mm length-class. Results indicate that strong foragers shift their feeding toward earlier copepod developmental stages, which was most apparent in four flatfish species, and demonstrate stronger overall prey selectivity than weak foragers. Inverse modeling revealed the latter is achieved through increases in apparent prey perception and/or responsiveness to dominant prey types (i.e. nauplii and copepodites) and declines for less frequent prey (e.g. veliger and Cladocera). Foraging strength increased modestly with larger eye diameter and mouth gape. Two possible explanations for prey selection patterns are that strong foragers have inherently different capacity to perceive and attack prey, or that after initially eating sufficient large prey to meet metabolic requirements fuller stomachs depend on the ability of larval fish to take advantage of random encounters.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.