{"title":"ISF-GAN: Imagine, Select, and Fuse with GPT-Based Text Enrichment for Text-to-Image Synthesis","authors":"Yefei Sheng, Ming Tao, Jie Wang, Bing-Kun Bao","doi":"10.1145/3650033","DOIUrl":null,"url":null,"abstract":"<p>Text-to-Image synthesis aims to generate an accurate and semantically consistent image from a given text description. However, it is difficult for existing generative methods to generate semantically complete images from a single piece of text. Some works try to expand the input text to multiple captions via retrieving similar descriptions of the input text from the training set, but still fail to fill in missing image semantics. In this paper, we propose a GAN-based approach to Imagine, Select, and Fuse for Text-to-Image synthesis, named ISF-GAN. The proposed ISF-GAN contains Imagine Stage and Select and Fuse Stage to solve the above problems. First, the Imagine Stage proposes a text completion and enrichment module. This module guides a GPT-based model to enrich the text expression beyond the original dataset. Second, the Select and Fuse Stage selects qualified text descriptions, and then introduces a cross-modal attentional mechanism to interact these different sentences with the image features at different scales. In short, our proposed model enriches the input text information for completing missing semantics and introduces a cross-modal attentional mechanism to maximize the utilization of enriched text information to generate semantically consistent images. Experimental results on CUB, Oxford-102, and CelebA-HQ datasets prove the effectiveness and superiority of the proposed network. Code is available at https://github.com/Feilingg/ISF-GAN.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"14 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650033","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Text-to-Image synthesis aims to generate an accurate and semantically consistent image from a given text description. However, it is difficult for existing generative methods to generate semantically complete images from a single piece of text. Some works try to expand the input text to multiple captions via retrieving similar descriptions of the input text from the training set, but still fail to fill in missing image semantics. In this paper, we propose a GAN-based approach to Imagine, Select, and Fuse for Text-to-Image synthesis, named ISF-GAN. The proposed ISF-GAN contains Imagine Stage and Select and Fuse Stage to solve the above problems. First, the Imagine Stage proposes a text completion and enrichment module. This module guides a GPT-based model to enrich the text expression beyond the original dataset. Second, the Select and Fuse Stage selects qualified text descriptions, and then introduces a cross-modal attentional mechanism to interact these different sentences with the image features at different scales. In short, our proposed model enriches the input text information for completing missing semantics and introduces a cross-modal attentional mechanism to maximize the utilization of enriched text information to generate semantically consistent images. Experimental results on CUB, Oxford-102, and CelebA-HQ datasets prove the effectiveness and superiority of the proposed network. Code is available at https://github.com/Feilingg/ISF-GAN.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.