Raman, UV-Vis, MS, and IR characterization of molecular-colloidal solution of hydrated fullerenes C60 obtained using vacuum-sublimation cryogenic deposition method. Is the C60 molecule truly highly hydrophobic?
S. V. Cherednichenko, G. V. Andrievsky, N. A. Vinnikov, A. V. Dolbin, M. V. Kosevich, V. S. Shelkovsky, R. M. Basnukaeva, O. P. Gnatyuk, O. Bezkrovnyi, M. Ptak, M. Chaika, P. O. Kuzema, G. I. Dovbeshko
{"title":"Raman, UV-Vis, MS, and IR characterization of molecular-colloidal solution of hydrated fullerenes C60 obtained using vacuum-sublimation cryogenic deposition method. Is the C60 molecule truly highly hydrophobic?","authors":"S. V. Cherednichenko, G. V. Andrievsky, N. A. Vinnikov, A. V. Dolbin, M. V. Kosevich, V. S. Shelkovsky, R. M. Basnukaeva, O. P. Gnatyuk, O. Bezkrovnyi, M. Ptak, M. Chaika, P. O. Kuzema, G. I. Dovbeshko","doi":"10.1063/10.0024965","DOIUrl":null,"url":null,"abstract":"Vacuum-sublimation cryogenic deposition (VS-CD) method is successfully applied to produce fullerene water colloidal solution (FWCS): the melting of the solid phase of the mixture obtained by joint condensation of C60 fullerene and water vapors onto a surface cooled with liquid nitrogen results in formation of a stable colloidal solution. The results of the FWCS characterization by means of Raman, IR, and UV-Vis spectroscopy and their comparison with known literature data on hydrated fullerenes give the authors an opportunity to make conclusion that the FWCS contains C60@{H2O}n complexes of hydrated C60 fullerene. Transmission electron microscopy shows that the VS-CD-produced material contains predominantly small C60 clusters of about 2–5 nm size, while mass spectrometry with laser desorption/ionization has demonstrated the presence of pure fullerene C60 and the absence of any products of its transformation. The performed analysis reveals a close similarity of the stable C60@{H2O}n complexes generated by VS-CD with the previously known highly hydrophilic hydrated fullerene obtained by ultrasonication method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0024965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Vacuum-sublimation cryogenic deposition (VS-CD) method is successfully applied to produce fullerene water colloidal solution (FWCS): the melting of the solid phase of the mixture obtained by joint condensation of C60 fullerene and water vapors onto a surface cooled with liquid nitrogen results in formation of a stable colloidal solution. The results of the FWCS characterization by means of Raman, IR, and UV-Vis spectroscopy and their comparison with known literature data on hydrated fullerenes give the authors an opportunity to make conclusion that the FWCS contains C60@{H2O}n complexes of hydrated C60 fullerene. Transmission electron microscopy shows that the VS-CD-produced material contains predominantly small C60 clusters of about 2–5 nm size, while mass spectrometry with laser desorption/ionization has demonstrated the presence of pure fullerene C60 and the absence of any products of its transformation. The performed analysis reveals a close similarity of the stable C60@{H2O}n complexes generated by VS-CD with the previously known highly hydrophilic hydrated fullerene obtained by ultrasonication method.