Wei Zhang, Jinghuai Gao, Ying Shi, Xuan Ke, Zhen Li, Tao Yang, Wenbo Sun
{"title":"Q-compensated image-domain least-squares reverse time migration through preconditioned point-spread functions","authors":"Wei Zhang, Jinghuai Gao, Ying Shi, Xuan Ke, Zhen Li, Tao Yang, Wenbo Sun","doi":"10.1190/geo2023-0333.1","DOIUrl":null,"url":null,"abstract":"Image-domain least-squares reverse time migration (IDLSRTM) through point-spread functions (PSFs) has been proven to be a feasible approach to improve the spatial resolution and amplitude fidelity of reflection images recovered by reverse time migration (RTM). However, it usually ignores the earth’s <i>Q</i>-effects, which may lead to an unfocused reflection image with an undesired spatial resolution. In this paper, we develop a <i>Q</i>-compensated IDLSRTM approach (denoted as <i>Q</i>-IDLSRTM) through PSFs, in which we use the viscoacoustic wave equation based on the generalized standard linear solid model to simulate inherent subsurface attenuation and the linear inversion to compensate for the amplitude attenuation. The PSFs are estimated by a round of modeling-migration computation and spatial interpolation on the fly. There are two key points in the developed <i>Q</i>-IDLSRTM approach. The first is that we must apply the deblurring filter as a preconditioner to compensate for the attenuation of image amplitude of PSFs and RTM in a viscoacoustic medium, before the iterative solution. The preconditioned PSFs and RTM images can help us to construct a less ill-posed image-domain inverse problem that can produce an improved image quality and a faster convergence rate, compared with the conventional <i>Q</i>-IDLSRTM approach without the deblurring filter. The second key point is that we can impose the L1-norm constraint and total variation regularization on the reflection image to stabilize the solution of the ill-posed inverse problem. Several 2D and 3D experiments verify that the developed approach can achieve better imaging quality in terms of amplitude fidelity and spatial resolution relative to the conventional <i>Q</i>-IDLSRTM and acoustic IDLSRTM approaches.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"32 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0333.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Image-domain least-squares reverse time migration (IDLSRTM) through point-spread functions (PSFs) has been proven to be a feasible approach to improve the spatial resolution and amplitude fidelity of reflection images recovered by reverse time migration (RTM). However, it usually ignores the earth’s Q-effects, which may lead to an unfocused reflection image with an undesired spatial resolution. In this paper, we develop a Q-compensated IDLSRTM approach (denoted as Q-IDLSRTM) through PSFs, in which we use the viscoacoustic wave equation based on the generalized standard linear solid model to simulate inherent subsurface attenuation and the linear inversion to compensate for the amplitude attenuation. The PSFs are estimated by a round of modeling-migration computation and spatial interpolation on the fly. There are two key points in the developed Q-IDLSRTM approach. The first is that we must apply the deblurring filter as a preconditioner to compensate for the attenuation of image amplitude of PSFs and RTM in a viscoacoustic medium, before the iterative solution. The preconditioned PSFs and RTM images can help us to construct a less ill-posed image-domain inverse problem that can produce an improved image quality and a faster convergence rate, compared with the conventional Q-IDLSRTM approach without the deblurring filter. The second key point is that we can impose the L1-norm constraint and total variation regularization on the reflection image to stabilize the solution of the ill-posed inverse problem. Several 2D and 3D experiments verify that the developed approach can achieve better imaging quality in terms of amplitude fidelity and spatial resolution relative to the conventional Q-IDLSRTM and acoustic IDLSRTM approaches.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.