An Optimal Routing Framework for an Integrated Urban Power–Gas–Traffic Network

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Open Journal of Intelligent Transportation Systems Pub Date : 2024-03-27 DOI:10.1109/OJITS.2024.3380569
Mohammad Jadidbonab;Hussein Abdeltawab;Yasser Abdel-Rady I. Mohamed
{"title":"An Optimal Routing Framework for an Integrated Urban Power–Gas–Traffic Network","authors":"Mohammad Jadidbonab;Hussein Abdeltawab;Yasser Abdel-Rady I. Mohamed","doi":"10.1109/OJITS.2024.3380569","DOIUrl":null,"url":null,"abstract":"This paper develops a risk-averse-based framework for optimizing the operation of an integrated power, gas, and traffic (PGT) network with an application to a typical PGT network in downtown Edmonton, the forefront of Canada’s transition to electric vehicles and sustainable urban travel options. The developed non-probabilistic framework provides decision-makers with various secure options to avoid worst-case scenarios and promote social and environmental benefits. The integration of different energy systems allows operators to pursue optimal strategies in critical situations, such as facility outages, maintaining the system within a secure operational range without resorting to expensive workarounds. The proposed algorithm and integrated structure can select optimal travel routes to minimize gas-emission effects and locate charging options to reduce electric vehicle users’ travel time. It can mitigate challenges posed by distributed generator outages and roadway closures. The numerical results from implementing the framework on different case studies and the solar-based PGT network of Edmonton indicate its feasibility and effectiveness.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"5 ","pages":"223-237"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10481512","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10481512/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a risk-averse-based framework for optimizing the operation of an integrated power, gas, and traffic (PGT) network with an application to a typical PGT network in downtown Edmonton, the forefront of Canada’s transition to electric vehicles and sustainable urban travel options. The developed non-probabilistic framework provides decision-makers with various secure options to avoid worst-case scenarios and promote social and environmental benefits. The integration of different energy systems allows operators to pursue optimal strategies in critical situations, such as facility outages, maintaining the system within a secure operational range without resorting to expensive workarounds. The proposed algorithm and integrated structure can select optimal travel routes to minimize gas-emission effects and locate charging options to reduce electric vehicle users’ travel time. It can mitigate challenges posed by distributed generator outages and roadway closures. The numerical results from implementing the framework on different case studies and the solar-based PGT network of Edmonton indicate its feasibility and effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市电力-天然气-交通综合网络的优化路由框架
本文开发了一个基于风险规避的框架,用于优化电力、燃气和交通(PGT)综合网络的运营,并将其应用于埃德蒙顿市中心的一个典型 PGT 网络,埃德蒙顿是加拿大向电动汽车和可持续城市出行方式过渡的前沿。开发的非概率框架为决策者提供了各种安全选项,以避免最坏情况的发生,促进社会和环境效益。不同能源系统的整合使运营商能够在设施停运等危急情况下采取最优策略,将系统维持在安全运行范围内,而无需采用昂贵的变通方法。所提出的算法和集成结构可以选择最佳行驶路线,最大限度地减少气体排放影响,并找到充电选项,减少电动汽车用户的出行时间。它还能缓解分布式发电机断电和道路关闭带来的挑战。在不同案例研究和埃德蒙顿太阳能 PGT 网络上实施该框架的数值结果表明了其可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Predictor-Based CACC Design for Heterogeneous Vehicles With Distinct Input Delays NLOS Dies Twice: Challenges and Solutions of V2X for Cooperative Perception Control Allocation Approach Using Differential Steering to Compensate for Steering Actuator Failure Path Planning Optimization of Smart Vehicle With Fast Converging Distance-Dependent PSO Algorithm An Extensible Python Open-Source Simulation Platform for Developing and Benchmarking Bus Holding Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1