Controllable single-photon transport mediated by a time-modulated Jaynes–Cummings model

IF 1.5 4区 物理与天体物理 Q3 OPTICS Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-03-12 DOI:10.1088/1361-6455/ad2e2b
Haozhen Li, Yang Lan, Ran Zeng, Miao Hu, Mengmeng Xu, Xiuwen Xia, Jingping Xu, Yaping Yang
{"title":"Controllable single-photon transport mediated by a time-modulated Jaynes–Cummings model","authors":"Haozhen Li, Yang Lan, Ran Zeng, Miao Hu, Mengmeng Xu, Xiuwen Xia, Jingping Xu, Yaping Yang","doi":"10.1088/1361-6455/ad2e2b","DOIUrl":null,"url":null,"abstract":"Controllable single-photon scattering in a one-dimensional waveguide coupled to a Jaynes–Cummings structure containing a time-modulated two-level atom interacting with a single-mode cavity is investigated. The photon transmission and reflection amplitudes are calculated by using an effective Floquet Hamiltonian in real space. The results show that the coupling between the atom and the cavity mode can dynamically be tuned via periodically modulating the atomic transition frequency. As a consequence, the scattering behaviors of the waveguide photons can be actively manipulated, and a controllable single-photon switch with high on-off ratio could be realized. More interestingly, the switch works well within a wide frequency region, i.e., the transmission of both resonant and off-resonant waveguide photons can be effectively switched on or off with appropriate system parameters. Furthermore, the proposed dynamically tunable switching scheme is robust against atomic dissipation associated with the help of atom-cavity coupling mismatch. Such single-photon device can be used as an elementary unit for various quantum information processing.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad2e2b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Controllable single-photon scattering in a one-dimensional waveguide coupled to a Jaynes–Cummings structure containing a time-modulated two-level atom interacting with a single-mode cavity is investigated. The photon transmission and reflection amplitudes are calculated by using an effective Floquet Hamiltonian in real space. The results show that the coupling between the atom and the cavity mode can dynamically be tuned via periodically modulating the atomic transition frequency. As a consequence, the scattering behaviors of the waveguide photons can be actively manipulated, and a controllable single-photon switch with high on-off ratio could be realized. More interestingly, the switch works well within a wide frequency region, i.e., the transmission of both resonant and off-resonant waveguide photons can be effectively switched on or off with appropriate system parameters. Furthermore, the proposed dynamically tunable switching scheme is robust against atomic dissipation associated with the help of atom-cavity coupling mismatch. Such single-photon device can be used as an elementary unit for various quantum information processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由时间调制杰尼斯-康明斯模型介导的可控单光子传输
研究了与杰尼斯-康明斯结构耦合的一维波导中的可控单光子散射,杰尼斯-康明斯结构包含一个与单模腔相互作用的时间调制双水平原子。光子的传输和反射振幅是通过实空间的有效 Floquet Hamiltonian 计算得出的。结果表明,原子与空腔模式之间的耦合可以通过周期性调制原子转变频率来动态调整。因此,可以主动操纵波导光子的散射行为,实现高开关比的可控单光子开关。更有趣的是,这种开关在很宽的频率区域内都能很好地工作,也就是说,在适当的系统参数下,共振和非共振波导光子的传输都能被有效地打开或关闭。此外,所提出的动态可调开关方案还能抵御原子-空腔耦合失配带来的原子耗散。这种单光子器件可用作各种量子信息处理的基本单元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
期刊最新文献
X-ray circular dichroism measured by cross-polarization x-ray transient grating Toward a Mølmer Sørensen gate with .9999 fidelity Quantum states and spectra of small cylindrical and toroidal lattices Addendum: Multichannel quantum defect theory of strontium bound Rydberg states (2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001) Absolute nuclear charge radius by Na-like spectral line separation in high-Z elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1