Intact cell lipidomics using the Bruker MBT lipid Xtract assay allows the rapid detection of glycosyl-inositol-phospho-ceramides from Aspergillus fumigatus†
Aishani Chakraborty, Leila Alsharqi, Markus Kostrzewa, Darius Armstrong-James and Gerald Larrouy-Maumus
{"title":"Intact cell lipidomics using the Bruker MBT lipid Xtract assay allows the rapid detection of glycosyl-inositol-phospho-ceramides from Aspergillus fumigatus†","authors":"Aishani Chakraborty, Leila Alsharqi, Markus Kostrzewa, Darius Armstrong-James and Gerald Larrouy-Maumus","doi":"10.1039/D4MO00030G","DOIUrl":null,"url":null,"abstract":"<p >Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are major lipids in plant and fungal plasma membranes and play an important role in stress adaption. However, their analysis remains challenging due to the multiple steps involved in their extraction and purification prior to mass spectrometry analysis. To address this challenge, we report here a novel simplified method to identify GIPCs from <em>Aspergillus fumigatus</em> using the new Bruker MBT lipid Xtract assay. <em>A. fumigatus</em> reference strains and clinical isolates were cultured, harvested, heat-inactivated and suspended in double-distilled water. A fraction of this fungal preparation was then dried in a microtube, mixed with an MBT lipid Xtract matrix (Bruker Daltonik, Germany) and loaded onto a MALDI target plate. Analysis was performed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were scanned from <em>m</em>/<em>z</em> 700 to <em>m</em>/<em>z</em> 2 000. MALDI-TOF MS analysis of cultured fungi showed a clear signature of GIPCs in <em>Aspergillus fumigatus</em> reference strains and clinical isolates. Here, we have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with the MBT lipid Xtract is able to detect <em>Aspergillus fumigatus</em> GIPCs.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mo/d4mo00030g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d4mo00030g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are major lipids in plant and fungal plasma membranes and play an important role in stress adaption. However, their analysis remains challenging due to the multiple steps involved in their extraction and purification prior to mass spectrometry analysis. To address this challenge, we report here a novel simplified method to identify GIPCs from Aspergillus fumigatus using the new Bruker MBT lipid Xtract assay. A. fumigatus reference strains and clinical isolates were cultured, harvested, heat-inactivated and suspended in double-distilled water. A fraction of this fungal preparation was then dried in a microtube, mixed with an MBT lipid Xtract matrix (Bruker Daltonik, Germany) and loaded onto a MALDI target plate. Analysis was performed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were scanned from m/z 700 to m/z 2 000. MALDI-TOF MS analysis of cultured fungi showed a clear signature of GIPCs in Aspergillus fumigatus reference strains and clinical isolates. Here, we have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with the MBT lipid Xtract is able to detect Aspergillus fumigatus GIPCs.