Reconstruction-Aware Kernelized Fuzzy Clustering Framework Incorporating Local Information for Image Segmentation

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-03-27 DOI:10.1007/s11063-024-11450-1
Chengmao Wu, Xiao Qi
{"title":"Reconstruction-Aware Kernelized Fuzzy Clustering Framework Incorporating Local Information for Image Segmentation","authors":"Chengmao Wu, Xiao Qi","doi":"10.1007/s11063-024-11450-1","DOIUrl":null,"url":null,"abstract":"<p>Kernelized fuzzy C-means clustering with weighted local information is an extensively applied robust segmentation algorithm for noisy image. However, it is difficult to effectively solve the problem of segmenting image polluted by strong noise. To address this issue, a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is proposed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means clustering with local information, and a novel reconstruction-filtering information driven fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-level alternative and iterative algorithm is derived from optimizing model using optimization theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic images and actual images indicate that compared with the latest advanced fuzzy clustering-related algorithms, the algorithm presented in this paper has better segmentation performance and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28 and 0.01–0.08 respectively.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"7 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11450-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Kernelized fuzzy C-means clustering with weighted local information is an extensively applied robust segmentation algorithm for noisy image. However, it is difficult to effectively solve the problem of segmenting image polluted by strong noise. To address this issue, a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is proposed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means clustering with local information, and a novel reconstruction-filtering information driven fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-level alternative and iterative algorithm is derived from optimizing model using optimization theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic images and actual images indicate that compared with the latest advanced fuzzy clustering-related algorithms, the algorithm presented in this paper has better segmentation performance and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28 and 0.01–0.08 respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像分割的包含局部信息的重构感知核化模糊聚类框架
具有加权局部信息的核化模糊 C-means 聚类是一种广泛应用于噪声图像的鲁棒分割算法。然而,它很难有效解决强噪声污染图像的分割问题。针对这一问题,本文提出了一种具有丰富局部信息的重构感知核模糊 C 均值聚类算法。首先,给出了针对噪声图像的引导双边滤波优化模型;其次,将该滤波模型嵌入到具有局部信息的核化模糊 C-means 聚类中,提出了一种新颖的用于噪声污染图像分割的重构-滤波信息驱动模糊聚类模型;最后,利用最优化理论从优化模型中推导出了一种三级替代和迭代算法,并对其收敛性进行了严格分析。在噪声合成图像和实际图像上的大量实验结果表明,与最新的先进模糊聚类相关算法相比,本文提出的算法具有更好的分割性能和更强的噪声鲁棒性,其PSNR和ACC值分别提高了约0.16-3.28和0.01-0.08。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1