{"title":"Reconstruction-Aware Kernelized Fuzzy Clustering Framework Incorporating Local Information for Image Segmentation","authors":"Chengmao Wu, Xiao Qi","doi":"10.1007/s11063-024-11450-1","DOIUrl":null,"url":null,"abstract":"<p>Kernelized fuzzy C-means clustering with weighted local information is an extensively applied robust segmentation algorithm for noisy image. However, it is difficult to effectively solve the problem of segmenting image polluted by strong noise. To address this issue, a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is proposed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means clustering with local information, and a novel reconstruction-filtering information driven fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-level alternative and iterative algorithm is derived from optimizing model using optimization theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic images and actual images indicate that compared with the latest advanced fuzzy clustering-related algorithms, the algorithm presented in this paper has better segmentation performance and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28 and 0.01–0.08 respectively.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"7 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11450-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Kernelized fuzzy C-means clustering with weighted local information is an extensively applied robust segmentation algorithm for noisy image. However, it is difficult to effectively solve the problem of segmenting image polluted by strong noise. To address this issue, a reconstruction-aware kernel fuzzy C-mean clustering with rich local information is proposed in this paper. Firstly, the optimization modeling of guided bilateral filtering is given for noisy image; Secondly, this filtering model is embedded into kernelized fuzzy C-means clustering with local information, and a novel reconstruction-filtering information driven fuzzy clustering model for noise-corrupted image segmentation is presented; Finally, a tri-level alternative and iterative algorithm is derived from optimizing model using optimization theory and its convergence is strictly analyzed. Many Experimental results on noisy synthetic images and actual images indicate that compared with the latest advanced fuzzy clustering-related algorithms, the algorithm presented in this paper has better segmentation performance and stronger robustness to noise, and its PSNR and ACC values increase by about 0.16–3.28 and 0.01–0.08 respectively.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters