Application of a stabilizing model predictive controller to path following for a car‐like agricultural robot

Román Comelli, Sorin Olaru, María M. Seron, Ernesto Kofman
{"title":"Application of a stabilizing model predictive controller to path following for a car‐like agricultural robot","authors":"Román Comelli, Sorin Olaru, María M. Seron, Ernesto Kofman","doi":"10.1002/oca.3126","DOIUrl":null,"url":null,"abstract":"This work addresses the problem of path following for a car‐like agricultural robot by means of a finite control set model predictive control (FCS‐MPC) strategy that considers the control actions in a set composed of a limited amount of elements. Recent results on a stabilizing MPC formulation that replaces the classical control invariant set by a pair of inner‐outer sets are extended to preserve stability properties with different control and prediction horizons and are then used for the aforementioned application. Being particularly simple, the presented approach can explicitly deal with nonlinearities and constraints at the expense of resolution in the vehicle steering system, which in practice does not affect the controller performance as will be shown. In addition to describing the control method, simulations and a comparison with another nonlinear MPC strategy are presented to illustrate the advantages of the proposed scheme.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the problem of path following for a car‐like agricultural robot by means of a finite control set model predictive control (FCS‐MPC) strategy that considers the control actions in a set composed of a limited amount of elements. Recent results on a stabilizing MPC formulation that replaces the classical control invariant set by a pair of inner‐outer sets are extended to preserve stability properties with different control and prediction horizons and are then used for the aforementioned application. Being particularly simple, the presented approach can explicitly deal with nonlinearities and constraints at the expense of resolution in the vehicle steering system, which in practice does not affect the controller performance as will be shown. In addition to describing the control method, simulations and a comparison with another nonlinear MPC strategy are presented to illustrate the advantages of the proposed scheme.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳定模型预测控制器在类车农业机器人路径跟踪中的应用
这项研究通过有限控制集模型预测控制(FCS-MPC)策略解决了类似汽车的农业机器人的路径跟踪问题,该策略考虑了由有限元素组成的集合中的控制行动。用一对内-外集合取代经典控制不变集的稳定 MPC 方案的最新成果得到了扩展,以保持不同控制和预测视野下的稳定性,并用于上述应用。所提出的方法特别简单,可以明确处理非线性和约束条件,但牺牲了车辆转向系统的分辨率,这在实践中不会影响控制器的性能。除了介绍控制方法外,还将进行模拟并与另一种非线性 MPC 策略进行比较,以说明所提方案的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimal demand side management for microgrid cost minimization considering renewables Output feedback control of anti‐linear systems using adaptive dynamic programming Reachable set estimation of delayed Markovian jump neural networks based on an augmented zero equality approach Adaptive neural network dynamic surface optimal saturation control for single‐phase grid‐connected photovoltaic systems Intelligent integration of ANN and H‐infinity control for optimal enhanced performance of a wind generation unit linked to a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1