{"title":"Deep Learning Approach for No-Reference Screen Content Video Quality Assessment","authors":"Ngai-Wing Kwong;Yui-Lam Chan;Sik-Ho Tsang;Ziyin Huang;Kin-Man Lam","doi":"10.1109/TBC.2024.3374042","DOIUrl":null,"url":null,"abstract":"Screen content video (SCV) has drawn much more attention than ever during the COVID-19 period and has evolved from a niche to a mainstream due to the recent proliferation of remote offices, online meetings, shared-screen collaboration, and gaming live streaming. Therefore, quality assessments for screen content media are highly demanded to maintain service quality recently. Although many practical natural scene video quality assessment methods have been proposed and achieved promising results, these methods cannot be applied to the screen content video quality assessment (SCVQA) task directly since the content characteristics of SCV are substantially different from natural scene video. Besides, only one no-reference SCVQA (NR-SCVQA) method, which requires handcrafted features, has been proposed in the literature. Therefore, we propose the first deep learning approach explicitly designed for NR-SCVQA. First, a multi-channel convolutional neural network (CNN) model is used to extract spatial quality features of pictorial and textual regions separately. Since there is no human annotated quality for each screen content frame (SCF), the CNN model is pre-trained in a multi-task self-supervised fashion to extract spatial quality feature representation of SCF. Second, we propose a time-distributed CNN transformer model (TCNNT) to further process all SCF spatial quality feature representations of an SCV and learn spatial and temporal features simultaneously so that high-level spatiotemporal features of SCV can be extracted and used to assess the whole SCV quality. Experimental results demonstrate the robustness and validity of our model, which is closely related to human perception.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"555-569"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10479473/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Screen content video (SCV) has drawn much more attention than ever during the COVID-19 period and has evolved from a niche to a mainstream due to the recent proliferation of remote offices, online meetings, shared-screen collaboration, and gaming live streaming. Therefore, quality assessments for screen content media are highly demanded to maintain service quality recently. Although many practical natural scene video quality assessment methods have been proposed and achieved promising results, these methods cannot be applied to the screen content video quality assessment (SCVQA) task directly since the content characteristics of SCV are substantially different from natural scene video. Besides, only one no-reference SCVQA (NR-SCVQA) method, which requires handcrafted features, has been proposed in the literature. Therefore, we propose the first deep learning approach explicitly designed for NR-SCVQA. First, a multi-channel convolutional neural network (CNN) model is used to extract spatial quality features of pictorial and textual regions separately. Since there is no human annotated quality for each screen content frame (SCF), the CNN model is pre-trained in a multi-task self-supervised fashion to extract spatial quality feature representation of SCF. Second, we propose a time-distributed CNN transformer model (TCNNT) to further process all SCF spatial quality feature representations of an SCV and learn spatial and temporal features simultaneously so that high-level spatiotemporal features of SCV can be extracted and used to assess the whole SCV quality. Experimental results demonstrate the robustness and validity of our model, which is closely related to human perception.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”