Kotha Gangadhar, E. Mary Victoria, Abderrahim Wakif
{"title":"Irreversibility analysis for the EMHD flow of silver and magnesium oxide hybrid nanofluid due to nonlinear thermal radiation","authors":"Kotha Gangadhar, E. Mary Victoria, Abderrahim Wakif","doi":"10.1142/s0217984924503378","DOIUrl":null,"url":null,"abstract":"<p>Hybrid nanofluids were expressed by heat-transfer fluids into greater surface dispersion capabilities, stability and diffusion related for traditional nanofluids. The effort on the flow of volumetric entropy generation and convective heat transport of MHD hybrid nanofluid is considered. Hybrid nanofluid involves the field over the orderly stretchable surface for variable heat flux with the resistance of electric field. Effect on convective heating and nonlinear thermal radiation is again contained in the interpreted figure. Mathematical equations such as momentum, energy, conservation of mass and entropy were collected as conversion to governing partial differential equations by ordinary differential equations, utilizing similarity variables. An efficient finite element method (FEM) is used. Numerical calculations were accomplished for silver–magnesium oxide water (Ag-MgO/H<sub>2</sub>O) hybrid nanofluid and conventional silver water (Ag-H<sub>2</sub>O) nanofluid. The graphs were created by the temperature, velocity, and entropy profiles. to analyse the impact on governing parameters. These skin friction and heat transfer rates are analysed through regression analysis. The important allegation expressed by the hybrid Nanofluid has the best heat transfer rate, which is related to convectional nanofluid. Further, It raised the Brinkman number and Reynolds number and developed a total entropy of the structure.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"2011 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503378","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid nanofluids were expressed by heat-transfer fluids into greater surface dispersion capabilities, stability and diffusion related for traditional nanofluids. The effort on the flow of volumetric entropy generation and convective heat transport of MHD hybrid nanofluid is considered. Hybrid nanofluid involves the field over the orderly stretchable surface for variable heat flux with the resistance of electric field. Effect on convective heating and nonlinear thermal radiation is again contained in the interpreted figure. Mathematical equations such as momentum, energy, conservation of mass and entropy were collected as conversion to governing partial differential equations by ordinary differential equations, utilizing similarity variables. An efficient finite element method (FEM) is used. Numerical calculations were accomplished for silver–magnesium oxide water (Ag-MgO/H2O) hybrid nanofluid and conventional silver water (Ag-H2O) nanofluid. The graphs were created by the temperature, velocity, and entropy profiles. to analyse the impact on governing parameters. These skin friction and heat transfer rates are analysed through regression analysis. The important allegation expressed by the hybrid Nanofluid has the best heat transfer rate, which is related to convectional nanofluid. Further, It raised the Brinkman number and Reynolds number and developed a total entropy of the structure.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.