Neferine Targeted the NLRC5/NLRP3 Pathway to Inhibit M1-type Polarization and Pyroptosis of Macrophages to Improve Hyperuricemic Nephropathy.

IF 2.2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Current molecular medicine Pub Date : 2024-02-16 DOI:10.2174/0115665240272051240122074511
Wei Yin, Jin-Hua Wang, Yu-Mei Liang, Kang-Han Liu, Ying Chen, Yusa Chen
{"title":"Neferine Targeted the NLRC5/NLRP3 Pathway to Inhibit M1-type Polarization and Pyroptosis of Macrophages to Improve Hyperuricemic Nephropathy.","authors":"Wei Yin, Jin-Hua Wang, Yu-Mei Liang, Kang-Han Liu, Ying Chen, Yusa Chen","doi":"10.2174/0115665240272051240122074511","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neferine (Nef) has a renal protective effect. This research intended to explore the impact of Nef on hyperuricemic nephropathy (HN).</p><p><strong>Methods: </strong>Adenine and potassium oxonate were administered to SD rats to induce the HN model. Bone marrow macrophages (BMDM) and NRK-52E were used to construct a transwell co-culture system. The polarization of BMDM and apoptosis levels were detected using immunofluorescence and flow cytometry. Renal pathological changes were detected using hematoxylin-eosin (HE) and Masson staining. Biochemical methods were adopted to detect serum in rats. CCK-8 and EDU staining were used to assess cell activity and proliferation. RT-qPCR and western blot were adopted to detect NLRC5, NLRP3, pyroptosis, proliferation, and apoptosis-related factor levels.</p><p><strong>Results: </strong>After Nef treatment, renal injury and fibrosis in HN rats were inhibited, and UA concentration, urinary protein, BUN, and CRE levels were decreased. After Nef intervention, M1 markers, pyroptosis-related factors, and NLRC5 levels in BMDM stimulated with uric acid (UA) treatment were decreased. Meanwhile, the proliferation level of NRK-52E cells co-cultured with UA-treated BMDM was increased, but the apoptosis level was decreased. After NLRC5 overexpression, Nef-induced regulation was reversed, accompanied by increased NLRP3 levels. After NLRP3 was knocked down, the levels of M1-type markers and pyroptosis-related factors were reduced in BMDM.</p><p><strong>Conclusion: </strong>Nef improved HN by inhibiting macrophages polarized to M1-type and pyroptosis by targeting the NLRC5/NLRP3 pathway. This research provides a scientific theoretical basis for the treatment of HN.</p>","PeriodicalId":10873,"journal":{"name":"Current molecular medicine","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665240272051240122074511","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neferine (Nef) has a renal protective effect. This research intended to explore the impact of Nef on hyperuricemic nephropathy (HN).

Methods: Adenine and potassium oxonate were administered to SD rats to induce the HN model. Bone marrow macrophages (BMDM) and NRK-52E were used to construct a transwell co-culture system. The polarization of BMDM and apoptosis levels were detected using immunofluorescence and flow cytometry. Renal pathological changes were detected using hematoxylin-eosin (HE) and Masson staining. Biochemical methods were adopted to detect serum in rats. CCK-8 and EDU staining were used to assess cell activity and proliferation. RT-qPCR and western blot were adopted to detect NLRC5, NLRP3, pyroptosis, proliferation, and apoptosis-related factor levels.

Results: After Nef treatment, renal injury and fibrosis in HN rats were inhibited, and UA concentration, urinary protein, BUN, and CRE levels were decreased. After Nef intervention, M1 markers, pyroptosis-related factors, and NLRC5 levels in BMDM stimulated with uric acid (UA) treatment were decreased. Meanwhile, the proliferation level of NRK-52E cells co-cultured with UA-treated BMDM was increased, but the apoptosis level was decreased. After NLRC5 overexpression, Nef-induced regulation was reversed, accompanied by increased NLRP3 levels. After NLRP3 was knocked down, the levels of M1-type markers and pyroptosis-related factors were reduced in BMDM.

Conclusion: Nef improved HN by inhibiting macrophages polarized to M1-type and pyroptosis by targeting the NLRC5/NLRP3 pathway. This research provides a scientific theoretical basis for the treatment of HN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奈非林靶向NLRC5/NLRP3通路抑制巨噬细胞的M1型极化和嗜热,改善高尿酸血症肾病
背景:奈非林(Nef奈非林(Nef)具有保护肾脏的作用。本研究旨在探讨奈非林对高尿酸血症肾病(HN)的影响:方法:给 SD 大鼠注射腺嘌呤和草酸钾诱导 HN 模型。方法:给 SD 大鼠注射腺嘌呤和氧化钾诱导 HN 模型,用骨髓巨噬细胞(BMDM)和 NRK-52E 构建跨孔共培养系统。使用免疫荧光和流式细胞术检测骨髓巨噬细胞的极化和凋亡水平。采用苏木精-伊红(HE)和马森染色法检测肾脏病理变化。采用生化方法检测大鼠血清。CCK-8和EDU染色用于评估细胞活性和增殖。采用RT-qPCR和Western blot检测NLRC5、NLRP3、化脓、增殖和凋亡相关因子的水平:结果:Nef治疗后,HN大鼠的肾损伤和肾纤维化得到抑制,UA浓度、尿蛋白、BUN和CRE水平下降。Nef干预后,尿酸(UA)刺激的BMDM中的M1标志物、热蛋白相关因子和NLRC5水平下降。同时,与 UA 处理过的 BMDM 共同培养的 NRK-52E 细胞增殖水平升高,但凋亡水平降低。NLRC5过表达后,Nef诱导的调控被逆转,同时NLRP3水平升高。NLRP3被敲除后,BMDM中M1型标志物和热凋亡相关因子的水平降低:结论:Nef通过靶向NLRC5/NLRP3通路抑制巨噬细胞极化为M1型和化脓,从而改善HN。这项研究为治疗 HN 提供了科学的理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current molecular medicine
Current molecular medicine 医学-医学:研究与实验
CiteScore
5.00
自引率
4.00%
发文量
141
审稿时长
4-8 weeks
期刊介绍: Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews/ mini-reviews, original research articles, short communications/letters and drug clinical trial studies on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal invites guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
期刊最新文献
Role of Nrf2 in Epilepsy Treatment. Exploring the Neuroprotective Potential of Icariin through Modulation of Neural Pathways in the Treatment of Neurological Diseases. Multiplex PCR System for the Diagnosis of Plague. Stem Cells as a Novel Source for Regenerative Medicinal Applications in Alzheimer's Disease: An Update. Fascin Inhibitor NP-G2-044 Decreases Cell Metastasis and Increases Overall Survival of Mice-Bearing Lung Cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1