Zin Khant Aung, Sharon R. Ladyman, Rosemary S. E. Brown
{"title":"Transient loss of satiety effects of leptin in middle-aged male mice","authors":"Zin Khant Aung, Sharon R. Ladyman, Rosemary S. E. Brown","doi":"10.1111/jne.13386","DOIUrl":null,"url":null,"abstract":"<p>Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18–22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":"36 5","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13386","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jne.13386","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive research is undertaken in rodents to determine the mechanism underlying obesity-induced leptin resistance. While body weight is generally tightly controlled in these studies, the effect of age of experimental animals has received less attention. Specifically, there has been little investigation into leptin regulation of food intake in middle-aged animals, which is a period of particular relevance for weight gain in humans. We investigated whether the satiety effects of leptin remained constant in young (3 months), middle-aged (12 months) or aged (18–22 months) male mice. Although mean body weight increased with age, leptin concentrations did not significantly increase in male mice beyond 12 months of age. Exogenous leptin administration led to a significant reduction in food intake in young mice but had no effect on food intake in middle-aged male mice. This loss of the satiety effect of leptin appeared to be transient, with leptin administration leading to the greatest inhibition of food intake in the aged male mice. Subsequently, we investigated whether these differences were due to changes in leptin transport into the brain with ageing. No change in leptin clearance from the blood or transport into the brain was observed, suggesting the emergence of central resistance to leptin in middle age. These studies demonstrate the presence of dynamic and age-specific changes in the satiety effects of leptin in male mice and highlight the requirement for age to be carefully considered when undertaking metabolic studies in rodents.
期刊介绍:
Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field.
In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.