Neoantigen identification: Technological advances and challenges.

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Methods in cell biology Pub Date : 2024-01-01 Epub Date: 2023-09-19 DOI:10.1016/bs.mcb.2023.06.005
Ting Pu, Allyson Peddle, Jingjing Zhu, Sabine Tejpar, Sara Verbandt
{"title":"Neoantigen identification: Technological advances and challenges.","authors":"Ting Pu, Allyson Peddle, Jingjing Zhu, Sabine Tejpar, Sara Verbandt","doi":"10.1016/bs.mcb.2023.06.005","DOIUrl":null,"url":null,"abstract":"<p><p>Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2023.06.005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新抗原鉴定:技术进步与挑战。
新抗原已成为癌症疫苗和采用性细胞疗法等尖端免疫疗法的有望靶点。这些新抗原是肿瘤所特有的,完全由肿瘤蛋白质中的体细胞突变或非基因组畸变引起。它们包含多种改变,包括基因组突变、转录后变异和病毒性肿瘤蛋白。随着技术的进步,免疫原性新抗原的鉴定工作进展迅速,为提高其临床意义带来了新的机遇。预测新抗原需要获取高质量的样本和测序数据,然后进行突变调用。随后,需要整合各种工具来预测新抗原的表达、处理、结合和识别潜力。然而,计算工具的不断改进受制于包含有效免疫原新抗原的数据集的可用性。这篇综述文章旨在全面总结新抗原预测和验证方面的现有知识和局限性。此外,文章还深入探讨了新抗原的起源和生物学作用,让人们更深入地了解新抗原在癌症免疫治疗领域的意义。因此,这篇文章旨在为目前利用新抗原作为抗癌利器的努力做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
期刊最新文献
Assessing chronological aging in Saccharomyces cerevisiae. Assessing microbiota composition in the context of aging. Assessing polyglutamine tract aggregation in the nematode Caenorhabditis elegans. Assessment of cell cycle progression and mitotic slippage by videomicroscopy. Cellular senescence and aging at the crossroad between immunity and cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1