Training of epitope-TCR prediction models with healthy donor-derived cancer-specific T cells.

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Methods in cell biology Pub Date : 2024-01-01 Epub Date: 2023-09-15 DOI:10.1016/bs.mcb.2023.08.001
Donovan Flumens, Sofie Gielis, Esther Bartholomeus, Diana Campillo-Davo, Sanne van der Heijden, Maarten Versteven, Hans De Reu, Evelien Smits, Benson Ogunjimi, Kris Laukens, Pieter Meysman, Eva Lion
{"title":"Training of epitope-TCR prediction models with healthy donor-derived cancer-specific T cells.","authors":"Donovan Flumens, Sofie Gielis, Esther Bartholomeus, Diana Campillo-Davo, Sanne van der Heijden, Maarten Versteven, Hans De Reu, Evelien Smits, Benson Ogunjimi, Kris Laukens, Pieter Meysman, Eva Lion","doi":"10.1016/bs.mcb.2023.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT1<sub>37-45</sub>-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2023.08.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT137-45-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用健康供体来源的癌症特异性 T 细胞训练表位-TCR 预测模型。
发现用于癌症疗法的表位特异性 T 细胞受体(TCR)是一项耗时且昂贵的工作,通常需要大量患者细胞。为了在癌症研究中最大限度地利用珍贵样本的信息并最大限度地减少对其的需求,人们开发了预测模型来在硅学中识别表位特异性 TCR。在本章中,我们将逐步介绍如何使用用户友好的 TCRex 网络工具,针对几乎通用的肿瘤相关抗原 Wilms' tumor 1(WT1)特异性 TCR 反应谱来训练预测模型。WT1 是许多实体瘤和血液恶性肿瘤中过度表达的自身抗原,具有很高的临床相关性。计算模型的训练是从已知表位特异性 TCR 列表开始的,而新的癌症表位往往没有这样的列表。因此,我们介绍了一种工作流程,即从WT137-45反应性CD8 T细胞克隆扩增并从健康供体外周血单核细胞中分拣出的TCR序列组成训练数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in cell biology
Methods in cell biology 生物-细胞生物学
CiteScore
3.10
自引率
0.00%
发文量
125
审稿时长
3 months
期刊介绍: For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.
期刊最新文献
Assessing chronological aging in Saccharomyces cerevisiae. Assessing microbiota composition in the context of aging. Assessing polyglutamine tract aggregation in the nematode Caenorhabditis elegans. Assessment of cell cycle progression and mitotic slippage by videomicroscopy. Cellular senescence and aging at the crossroad between immunity and cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1