MonoAux: Fully Exploiting Auxiliary Information and Uncertainty for Monocular 3D Object Detection.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2024-03-27 eCollection Date: 2024-01-01 DOI:10.34133/cbsystems.0097
Zhenglin Li, Wenbo Zheng, Le Yang, Liyan Ma, Yang Zhou, Yan Peng
{"title":"MonoAux: Fully Exploiting Auxiliary Information and Uncertainty for Monocular 3D Object Detection.","authors":"Zhenglin Li, Wenbo Zheng, Le Yang, Liyan Ma, Yang Zhou, Yan Peng","doi":"10.34133/cbsystems.0097","DOIUrl":null,"url":null,"abstract":"<p><p>Monocular 3D object detection plays a pivotal role in autonomous driving, presenting a formidable challenge by requiring the precise localization of 3D objects within a single image, devoid of depth information. Most existing methods in this domain fall short of harnessing the limited information available in monocular 3D detection tasks. They typically provide only a single detection outcome, omitting essential uncertainty analysis and result post-processing during model inference, thus limiting overall model performance. In this paper, we propose a comprehensive framework that maximizes information extraction from monocular images while encompassing diverse depth estimation and incorporating uncertainty analysis. Specifically, we mine additional information intrinsic to the monocular 3D detection task to augment supervision, thereby addressing the information scarcity challenge. Moreover, our framework handles depth estimation by recovering multiple sets of depth values from calculated visual heights. The final depth estimate and 3D confidence are determined through an uncertainty fusion process, effectively reducing inference errors. Furthermore, to address task weight allocation in multi-task training, we present a versatile training strategy tailored to monocular 3D detection. This approach leverages measurement indicators to monitor task progress, adaptively adjusting loss weights for different tasks. Experimental results on the KITTI and Waymo dataset confirm the effectiveness of our approach. The proposed method consistently provides enhanced performance across various difficulty levels compared to the original framework while maintaining real-time efficiency.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"5 ","pages":"0097"},"PeriodicalIF":10.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976585/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Monocular 3D object detection plays a pivotal role in autonomous driving, presenting a formidable challenge by requiring the precise localization of 3D objects within a single image, devoid of depth information. Most existing methods in this domain fall short of harnessing the limited information available in monocular 3D detection tasks. They typically provide only a single detection outcome, omitting essential uncertainty analysis and result post-processing during model inference, thus limiting overall model performance. In this paper, we propose a comprehensive framework that maximizes information extraction from monocular images while encompassing diverse depth estimation and incorporating uncertainty analysis. Specifically, we mine additional information intrinsic to the monocular 3D detection task to augment supervision, thereby addressing the information scarcity challenge. Moreover, our framework handles depth estimation by recovering multiple sets of depth values from calculated visual heights. The final depth estimate and 3D confidence are determined through an uncertainty fusion process, effectively reducing inference errors. Furthermore, to address task weight allocation in multi-task training, we present a versatile training strategy tailored to monocular 3D detection. This approach leverages measurement indicators to monitor task progress, adaptively adjusting loss weights for different tasks. Experimental results on the KITTI and Waymo dataset confirm the effectiveness of our approach. The proposed method consistently provides enhanced performance across various difficulty levels compared to the original framework while maintaining real-time efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MonoAux:充分利用辅助信息和不确定性进行单目三维物体检测
单目三维物体检测在自动驾驶中起着举足轻重的作用,它要求在缺乏深度信息的单幅图像中对三维物体进行精确定位,因此是一项艰巨的挑战。该领域的大多数现有方法都无法利用单目三维检测任务中的有限信息。它们通常只提供单一的检测结果,在模型推理过程中忽略了重要的不确定性分析和结果后处理,从而限制了模型的整体性能。在本文中,我们提出了一个综合框架,它能最大限度地从单目图像中提取信息,同时包含多种深度估算和不确定性分析。具体来说,我们挖掘单目三维检测任务的固有额外信息来增强监督,从而解决信息匮乏的难题。此外,我们的框架通过从计算出的视觉高度恢复多组深度值来处理深度估计。通过不确定性融合过程确定最终的深度估计值和三维置信度,从而有效减少推理误差。此外,为了解决多任务训练中的任务权重分配问题,我们提出了一种专为单目三维检测量身定制的多功能训练策略。该方法利用测量指标监控任务进度,针对不同任务自适应调整损失权重。在 KITTI 和 Waymo 数据集上的实验结果证实了我们方法的有效性。与原始框架相比,所提出的方法在保持实时效率的同时,在各种难度下都能持续提供更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism. Federated Abnormal Heart Sound Detection with Weak to No Labels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1