Integrating Clinical Guidelines With ChatGPT-4 Enhances Its’ Skills

Raseen Tariq MBBS, Elida Voth MD, Sahil Khanna MBBS, MS
{"title":"Integrating Clinical Guidelines With ChatGPT-4 Enhances Its’ Skills","authors":"Raseen Tariq MBBS,&nbsp;Elida Voth MD,&nbsp;Sahil Khanna MBBS, MS","doi":"10.1016/j.mcpdig.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>Navigating clinical guidelines can be complex for real-time health care decision making. Our study evaluates the chat generative prerained transformer (ChatGPT)-4 in improving responses to clinical questions by integrating guidelines on <em>Clostridioides difficile</em> infection and colon polyp surveillance. We assessed ChatGPT-4’s responses to questions before and after guideline integration, noting a clear improvement in accuracy. ChatGPT-4 provided guideline-aligned answers consistently. Further analysis showed its ability to summarize information from conflicting guidelines, highlighting its utility in complex clinical scenarios. The findings suggest that large language models such as ChatGPT-4 can enhance clinical decision making and patient education by providing quick, conversational, and accurate responses. This approach opens a path for using artificial intelligence to deliver reliable responses in health care, supporting clinicians in real-time decision making and improving patient care.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 177-180"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000178/pdfft?md5=7aaafaf14f2ffcccea9377d36db0cb44&pid=1-s2.0-S2949761224000178-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Navigating clinical guidelines can be complex for real-time health care decision making. Our study evaluates the chat generative prerained transformer (ChatGPT)-4 in improving responses to clinical questions by integrating guidelines on Clostridioides difficile infection and colon polyp surveillance. We assessed ChatGPT-4’s responses to questions before and after guideline integration, noting a clear improvement in accuracy. ChatGPT-4 provided guideline-aligned answers consistently. Further analysis showed its ability to summarize information from conflicting guidelines, highlighting its utility in complex clinical scenarios. The findings suggest that large language models such as ChatGPT-4 can enhance clinical decision making and patient education by providing quick, conversational, and accurate responses. This approach opens a path for using artificial intelligence to deliver reliable responses in health care, supporting clinicians in real-time decision making and improving patient care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将临床指南与 ChatGPT-4 相结合可提高其技能
对于实时医疗决策而言,浏览临床指南可能很复杂。我们的研究通过整合艰难梭菌感染和结肠息肉监测指南,评估了聊天生成预增益转换器(ChatGPT)-4 在改善临床问题回复方面的作用。我们评估了指南整合前后 ChatGPT-4 对问题的回答,发现其准确性明显提高。ChatGPT-4 提供的答案始终与指南保持一致。进一步的分析表明,它有能力概括相互矛盾的指南信息,突出了它在复杂临床场景中的实用性。研究结果表明,像 ChatGPT-4 这样的大型语言模型可以通过提供快速、会话式的准确回答来加强临床决策制定和患者教育。这种方法为在医疗保健领域使用人工智能提供可靠的回复开辟了一条道路,可为临床医生实时决策和改善患者护理提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
期刊最新文献
Developing a Research Center for Artificial Intelligence in Medicine Strategic Considerations for Selecting Artificial Intelligence Solutions for Institutional Integration: A Single-Center Experience Reviewers for Mayo Clinic Proceedings: Digital Health (2024) A Blueprint for Clinical-Driven Medical Device Development: The Feverkidstool Application to Identify Children With Serious Bacterial Infection Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1