{"title":"Smart data augmentation: One equation is all you need","authors":"Yuhao Zhang, Lu Tang, Yuxiao Huang, Yan Ma","doi":"10.1002/sam.11672","DOIUrl":null,"url":null,"abstract":"Class imbalance is a common and critical challenge in machine learning classification problems, resulting in low prediction accuracy. While numerous methods, especially data augmentation methods, have been proposed to address this issue, a method that works well on one dataset may perform poorly on another. To the best of our knowledge, there is still no one single best approach for handling class imbalance that can be uniformly applied. In this paper, we propose an approach named smart data augmentation (SDA), which aims to augment imbalanced data in an optimal way to maximize downstream classification accuracy. The key novelty of SDA is an equation that can bring about an augmentation method that provides a unified representation of existing sampling methods for handling multi‐level class imbalance and allows easy fine‐tuning. This framework allows SDA to be seen as a generalization of traditional methods, which in turn can be viewed as specific cases of SDA. Empirical results on a wide range of datasets demonstrate that SDA could significantly improve the performance of the most popular classifiers such as random forest, multi‐layer perceptron, and histogram‐based gradient boosting.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"234 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11672","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Class imbalance is a common and critical challenge in machine learning classification problems, resulting in low prediction accuracy. While numerous methods, especially data augmentation methods, have been proposed to address this issue, a method that works well on one dataset may perform poorly on another. To the best of our knowledge, there is still no one single best approach for handling class imbalance that can be uniformly applied. In this paper, we propose an approach named smart data augmentation (SDA), which aims to augment imbalanced data in an optimal way to maximize downstream classification accuracy. The key novelty of SDA is an equation that can bring about an augmentation method that provides a unified representation of existing sampling methods for handling multi‐level class imbalance and allows easy fine‐tuning. This framework allows SDA to be seen as a generalization of traditional methods, which in turn can be viewed as specific cases of SDA. Empirical results on a wide range of datasets demonstrate that SDA could significantly improve the performance of the most popular classifiers such as random forest, multi‐layer perceptron, and histogram‐based gradient boosting.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.