Saliency information and mosaic based data augmentation method for densely occluded object recognition

IF 3.7 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Analysis and Applications Pub Date : 2024-03-29 DOI:10.1007/s10044-024-01258-z
Ying Tong, Xiangfeng Luo, Liyan Ma, Shaorong Xie, Wenbin Yang, Yinsai Guo
{"title":"Saliency information and mosaic based data augmentation method for densely occluded object recognition","authors":"Ying Tong, Xiangfeng Luo, Liyan Ma, Shaorong Xie, Wenbin Yang, Yinsai Guo","doi":"10.1007/s10044-024-01258-z","DOIUrl":null,"url":null,"abstract":"<p>Data augmentation methods are crucial to improve the accuracy of densely occluded object recognition in the scene where the quantity and diversity of training images are insufficient. However, the current methods that use regional dropping and mixing strategies suffer from the problem of missing foreground objects and redundant background features, which can lead to densely occluded object recognition issues in classification or detection tasks. Herein, saliency information and mosaic based data augmentation method for densely occluded object recognition is proposed, which utilizes saliency information as prior knowledge to supervise the mosaic process of training images containing densely occluded objects. And the method uses fogging processing and class label mixing to construct new augmented images, in order to improve the accuracy of image classification and object recognition tasks by augmenting the quantity and diversity of training images. Extensive experiments on different classification datasets with various CNN architectures prove the effectiveness of our method.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"43 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01258-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Data augmentation methods are crucial to improve the accuracy of densely occluded object recognition in the scene where the quantity and diversity of training images are insufficient. However, the current methods that use regional dropping and mixing strategies suffer from the problem of missing foreground objects and redundant background features, which can lead to densely occluded object recognition issues in classification or detection tasks. Herein, saliency information and mosaic based data augmentation method for densely occluded object recognition is proposed, which utilizes saliency information as prior knowledge to supervise the mosaic process of training images containing densely occluded objects. And the method uses fogging processing and class label mixing to construct new augmented images, in order to improve the accuracy of image classification and object recognition tasks by augmenting the quantity and diversity of training images. Extensive experiments on different classification datasets with various CNN architectures prove the effectiveness of our method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于显著性信息和马赛克的数据增强方法用于密集遮挡物体识别
在训练图像数量和多样性不足的场景中,数据增强方法对于提高密集遮挡物体识别的准确性至关重要。然而,目前使用区域丢弃和混合策略的方法存在前景物体缺失和背景特征冗余的问题,这可能导致在分类或检测任务中出现密集遮挡物体识别问题。本文提出了基于显著性信息和马赛克的密集遮挡物体识别数据增强方法,该方法利用显著性信息作为先验知识,对包含密集遮挡物体的训练图像的马赛克过程进行监督。该方法利用雾化处理和类标签混合来构建新的增强图像,从而通过增强训练图像的数量和多样性来提高图像分类和物体识别任务的准确性。利用各种 CNN 架构在不同分类数据集上进行的大量实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Analysis and Applications
Pattern Analysis and Applications 工程技术-计算机:人工智能
CiteScore
7.40
自引率
2.60%
发文量
76
审稿时长
13.5 months
期刊介绍: The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.
期刊最新文献
K-BEST subspace clustering: kernel-friendly block-diagonal embedded and similarity-preserving transformed subspace clustering Research on decoupled adaptive graph convolution networks based on skeleton data for action recognition Hidden Markov models with multivariate bounded asymmetric student’s t-mixture model emissions YOLOv7-GCM: a detection algorithm for creek waste based on improved YOLOv7 model LDC-PP-YOLOE: a lightweight model for detecting and counting citrus fruit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1