Computational modeling of oligothiophenes-based donor molecules to boost optoelectronic attributes of organic solar cells

IF 1.5 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of The Chinese Chemical Society Pub Date : 2024-03-27 DOI:10.1002/jccs.202400033
Adeel Mubarik, Faiza Shafiq, Ammasi Arunkumar, Xue-Hai Ju
{"title":"Computational modeling of oligothiophenes-based donor molecules to boost optoelectronic attributes of organic solar cells","authors":"Adeel Mubarik,&nbsp;Faiza Shafiq,&nbsp;Ammasi Arunkumar,&nbsp;Xue-Hai Ju","doi":"10.1002/jccs.202400033","DOIUrl":null,"url":null,"abstract":"<p>The computational modeling of seven oligothiophene-based donor molecules (TZ1–TZ7) designed by acceptor modification at the terminal position of the literature molecule (TZR) were discussed for organic solar cells (OSCs). DFT simulations using B3LYP/def2svp levels were performed to study the optoelectronic, and PV properties of TZ1–TZ7. A range of essential aspects for efficient small donor molecules like open circuit voltages (<i>V</i><sub>OC</sub>), excitation energy (<i>E</i><sub>x</sub>), dipole moment (μ), density of state (DOS), absorption maxima (<i>λ</i><sub>max</sub>), transition density matrix (TDM), binding energy (<i>E</i><sub>b</sub>), and frontier molecular orbitals (FMOs) of TZ1–TZ7 and TZR have also been investigated. DOS and FMOs analysis revealed a reduced energy gap (<i>E</i><sub>g</sub>) and effective charge transfer (CT) in the TZ1–TZ7 molecules. The absorption spectra were examined using TD-DFT. Due to smaller <i>E</i><sub>g</sub>, <i>E</i><sub>b</sub>, <i>E</i><sub>x</sub>, and higher <i>λ</i><sub>max</sub>, <i>μ</i>, the TZ1–TZ7 molecules exhibit remarkable optoelectronic properties. The computed <i>V</i><sub>OC</sub> (0.969–1.189) and fill factor (0.886–0.897) for TZ1–TZ7 lead to improved power conversion efficiency (PCE) ranging from 14.05% to 17.60%. All compounds are strongly recommended for fabricating efficient OSCs with excellent PV properties. The current work is a step towards environmentally friendly organic PV and will pave the way for future structural engineering research for the efficient material design of OSCs.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"71 5","pages":"438-454"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202400033","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The computational modeling of seven oligothiophene-based donor molecules (TZ1–TZ7) designed by acceptor modification at the terminal position of the literature molecule (TZR) were discussed for organic solar cells (OSCs). DFT simulations using B3LYP/def2svp levels were performed to study the optoelectronic, and PV properties of TZ1–TZ7. A range of essential aspects for efficient small donor molecules like open circuit voltages (VOC), excitation energy (Ex), dipole moment (μ), density of state (DOS), absorption maxima (λmax), transition density matrix (TDM), binding energy (Eb), and frontier molecular orbitals (FMOs) of TZ1–TZ7 and TZR have also been investigated. DOS and FMOs analysis revealed a reduced energy gap (Eg) and effective charge transfer (CT) in the TZ1–TZ7 molecules. The absorption spectra were examined using TD-DFT. Due to smaller Eg, Eb, Ex, and higher λmax, μ, the TZ1–TZ7 molecules exhibit remarkable optoelectronic properties. The computed VOC (0.969–1.189) and fill factor (0.886–0.897) for TZ1–TZ7 lead to improved power conversion efficiency (PCE) ranging from 14.05% to 17.60%. All compounds are strongly recommended for fabricating efficient OSCs with excellent PV properties. The current work is a step towards environmentally friendly organic PV and will pave the way for future structural engineering research for the efficient material design of OSCs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于寡噻吩的供体分子的计算建模,提升有机太阳能电池的光电属性
讨论了通过在文献分子(TZR)的末端位置进行受体修饰而设计的七种低聚噻吩基供体分子(TZ1-TZ7)的计算建模,以用于有机太阳能电池(OSC)。采用 B3LYP/def2svp 水平进行了 DFT 模拟,以研究 TZ1-TZ7 的光电和光伏特性。此外,还研究了 TZ1-TZ7 和 TZR 的开路电压 (VOC)、激发能 (Ex)、偶极矩 (μ)、状态密度 (DOS)、吸收最大值 (λmax)、过渡密度矩阵 (TDM)、结合能 (Eb) 和前沿分子轨道 (FMOs) 等高效小型供体分子的一系列重要方面。DOS 和 FMOs 分析表明,TZ1-TZ7 分子的能隙(Eg)和有效电荷转移(CT)减小。利用 TD-DFT 对吸收光谱进行了研究。由于较小的 Eg、Eb、Ex 和较高的λmax、μ,TZ1-TZ7 分子表现出显著的光电特性。通过计算 TZ1-TZ7 的 VOC(0.969-1.189)和填充因子(0.886-0.897),功率转换效率(PCE)提高了 14.05% 至 17.60%。强烈建议使用所有化合物来制造具有优异光伏特性的高效 OSC。目前的研究工作是向环境友好型有机光伏技术迈出的一步,并将为未来的结构工程研究铺平道路,从而实现 OSCs 的高效材料设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
11.10%
发文量
216
审稿时长
7.5 months
期刊介绍: The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.
期刊最新文献
Contents and Masthead: Journal of the Chinese Chemical Society 12/2025 Preview: Journal of the Chinese Chemical Society 12/2025 Cover: Journal of the Chinese Chemical Society 12/2025 Cover: Journal of the Chinese Chemical Society 11/2025 Preview: Journal of the Chinese Chemical Society 11/2025
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1