{"title":"Analysis and Simulation of Lateral Collision Risk under Paired Approach","authors":"Fei Lu, Jian Zhang, Haonan Chen, Zichen Chen","doi":"10.1155/2024/7021298","DOIUrl":null,"url":null,"abstract":"The paired approach can improve the efficiency of closely spaced parallel runways. Calculating the probability and frequency of horizontal overlap is an indispensable step when evaluating the horizontal collision risk of the paired approach. As the generation of horizontal overlap probability is closely related to horizontal position error, we propose a calculation method of horizontal overlap probability based on position error from the perspective of pilot operation. First, according to the principle of flight mechanics, the attitude adjustment model is established for the horizontal direction of the approach process, and the pilot’s operation model for various position errors is based on the concept of the stochastic process. This attitude adjustment model can replicates the process of the pilot operating the steering column to change the aircraft’s attitude. When combined with the pilot’s operation model, it is possible to simulate the position errors generated during the approach process. Building on this, the horizontal overlapping conditions of two aircraft are analyzed to simulate the horizontal overlap process in the paired approach. The duration and instances of overlap counted and the ratio between these results and the total running time give the overlap probability and frequency. Multiple simulations in MATLAB reveal that higher pilot operating accuracy shortens the time for the aircraft to align with the course, whereas lower accuracy leads to unstable horizontal position errors. Furthermore, the horizontal overlap in paired approaches primarily occurs at the beginning of the procedure, and enhancing the pilot’s operating accuracy does not significantly affect the probability and frequency of horizontal overlap.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7021298","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The paired approach can improve the efficiency of closely spaced parallel runways. Calculating the probability and frequency of horizontal overlap is an indispensable step when evaluating the horizontal collision risk of the paired approach. As the generation of horizontal overlap probability is closely related to horizontal position error, we propose a calculation method of horizontal overlap probability based on position error from the perspective of pilot operation. First, according to the principle of flight mechanics, the attitude adjustment model is established for the horizontal direction of the approach process, and the pilot’s operation model for various position errors is based on the concept of the stochastic process. This attitude adjustment model can replicates the process of the pilot operating the steering column to change the aircraft’s attitude. When combined with the pilot’s operation model, it is possible to simulate the position errors generated during the approach process. Building on this, the horizontal overlapping conditions of two aircraft are analyzed to simulate the horizontal overlap process in the paired approach. The duration and instances of overlap counted and the ratio between these results and the total running time give the overlap probability and frequency. Multiple simulations in MATLAB reveal that higher pilot operating accuracy shortens the time for the aircraft to align with the course, whereas lower accuracy leads to unstable horizontal position errors. Furthermore, the horizontal overlap in paired approaches primarily occurs at the beginning of the procedure, and enhancing the pilot’s operating accuracy does not significantly affect the probability and frequency of horizontal overlap.
期刊介绍:
Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.