Nicole M. Braunscheidel, Arnab Bachhar and Nicholas J. Mayhall
{"title":"Accurate and interpretable representation of correlated electronic structure via Tensor Product Selected CI†","authors":"Nicole M. Braunscheidel, Arnab Bachhar and Nicholas J. Mayhall","doi":"10.1039/D4FD00049H","DOIUrl":null,"url":null,"abstract":"<p >The task of computing wavefunctions that are accurate, yet simple enough mathematical objects to use for reasoning, has long been a challenge in quantum chemistry. The difficulty in drawing physical conclusions from a wavefunction is often related to the generally large number of configurations with similar weights. In Tensor Product Selected Configuration Interaction (TPSCI), we use a locally correlated tensor product state basis, which has the effect of concentrating the weight of a state onto a smaller number of physically interpretable degrees of freedom. In this paper, we apply TPSCI to a series of three molecular systems ranging in separability, one of which is the first application of TPSCI to an open-shell bimetallic system. For each of these systems, we obtain accurate solutions to large active spaces, and analyze the resulting wavefunctions through a series of different approaches including (i) direct inspection of the TPS basis coefficients, (ii) construction of Bloch effective Hamiltonians, and (iii) computation of cluster correlation functions.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"254 ","pages":" 130-156"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d4fd00049h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/fd/d4fd00049h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
The task of computing wavefunctions that are accurate, yet simple enough mathematical objects to use for reasoning, has long been a challenge in quantum chemistry. The difficulty in drawing physical conclusions from a wavefunction is often related to the generally large number of configurations with similar weights. In Tensor Product Selected Configuration Interaction (TPSCI), we use a locally correlated tensor product state basis, which has the effect of concentrating the weight of a state onto a smaller number of physically interpretable degrees of freedom. In this paper, we apply TPSCI to a series of three molecular systems ranging in separability, one of which is the first application of TPSCI to an open-shell bimetallic system. For each of these systems, we obtain accurate solutions to large active spaces, and analyze the resulting wavefunctions through a series of different approaches including (i) direct inspection of the TPS basis coefficients, (ii) construction of Bloch effective Hamiltonians, and (iii) computation of cluster correlation functions.