Cross-modal learning with multi-modal model for video action recognition based on adaptive weight training

IF 3.2 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Connection Science Pub Date : 2024-03-27 DOI:10.1080/09540091.2024.2325474
Qingguo Zhou, Yufeng Hou, Rui Zhou, Yan Li, JinQiang Wang, Zhen Wu, Hung-Wei Li, Tien-Hsiung Weng
{"title":"Cross-modal learning with multi-modal model for video action recognition based on adaptive weight training","authors":"Qingguo Zhou, Yufeng Hou, Rui Zhou, Yan Li, JinQiang Wang, Zhen Wu, Hung-Wei Li, Tien-Hsiung Weng","doi":"10.1080/09540091.2024.2325474","DOIUrl":null,"url":null,"abstract":"The canonical video action recognition methods usually label categories with numbers or one-hot vectors and train neural networks to classify a fixed set of predefined categories, thereby constrain...","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2024.2325474","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The canonical video action recognition methods usually label categories with numbers or one-hot vectors and train neural networks to classify a fixed set of predefined categories, thereby constrain...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应权重训练的视频动作识别多模态模型的跨模态学习
典型的视频动作识别方法通常用数字或单点向量标注类别,并训练神经网络对一组固定的预定义类别进行分类,从而限制了对动作的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Connection Science
Connection Science 工程技术-计算机:理论方法
CiteScore
6.50
自引率
39.60%
发文量
94
审稿时长
3 months
期刊介绍: Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing. A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.
期刊最新文献
Devising single in-out long short-term memory univariate models for predicting the electricity price on the day-ahead markets A continual learning framework to train robust image recognition models by adversarial training and knowledge distillation IPFS-blockchain-based delegation model for internet of medical robotics things telesurgery system Toward cost-effective quantum circuit simulation with performance tuning techniques ERAM-EE: Efficient resource allocation and management strategies with energy efficiency under fog–internet of things environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1