Genomic insights into the evolution and mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae co-harboring blaKPC and blaNDM: implications for public health threat mitigation.
{"title":"Genomic insights into the evolution and mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae co-harboring bla<sub>KPC</sub> and bla<sub>NDM</sub>: implications for public health threat mitigation.","authors":"Qian Wang, Yue Liu, Ran Chen, Meng Zhang, Zaifeng Si, Yueling Wang, Yan Jin, Yuanyuan Bai, Zhen Song, Xinglun Lu, Mingju Hao, Yingying Hao","doi":"10.1186/s12941-024-00686-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) co-producing bla<sub>KPC</sub> and bla<sub>NDM</sub> poses a serious threat to public health. This study aimed to investigate the mechanisms underlying the resistance and virulence of CR-hvKP isolates collected from a Chinese hospital, with a focus on bla<sub>KPC</sub> and bla<sub>NDM</sub> dual-positive hvKP strains.</p><p><strong>Methods: </strong>Five CR-hvKP strains were isolated from a teaching hospital in China. Antimicrobial susceptibility and plasmid stability testing, plasmid conjugation, pulsed-field gel electrophoresis, and whole-genome sequencing (WGS) were performed to examine the mechanisms of resistance and virulence. The virulence of CR-hvKP was evaluated through serum-killing assay and Galleria mellonella lethality experiments. Phylogenetic analysis based on 16 highly homologous carbapenem-resistant K. pneumoniae (CRKP) producing KPC-2 isolates from the same hospital was conducted to elucidate the potential evolutionary pathway of CRKP co-producing NDM and KPC.</p><p><strong>Results: </strong>WGS revealed that five isolates individually carried three unique plasmids: an IncFIB/IncHI1B-type virulence plasmid, IncFII/IncR-type plasmid harboring KPC-2 and IncC-type plasmid harboring NDM-1. The conjugation test results indicated that the transference of KPC-2 harboring IncFII/IncR-type plasmid was unsuccessful on their own, but could be transferred by forming a hybrid plasmid with the IncC plasmid harboring NDM. Further genetic analysis confirmed that the pJNKPN26-KPC plasmid was entirely integrated into the IncC-type plasmid via the copy-in route, which was mediated by TnAs1 and IS26.</p><p><strong>Conclusion: </strong>KPC-NDM-CR-hvKP likely evolved from a KPC-2-CRKP ancestor and later acquired a highly transferable bla<sub>NDM-1</sub> plasmid. ST11-KL64 CRKP exhibited enhanced plasticity. The identification of KPC-2-NDM-1-CR-hvKP highlights the urgent need for effective preventive strategies against aggravated accumulation of resistance genes.</p>","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":"23 1","pages":"27"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Clinical Microbiology and Antimicrobials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12941-024-00686-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) co-producing blaKPC and blaNDM poses a serious threat to public health. This study aimed to investigate the mechanisms underlying the resistance and virulence of CR-hvKP isolates collected from a Chinese hospital, with a focus on blaKPC and blaNDM dual-positive hvKP strains.
Methods: Five CR-hvKP strains were isolated from a teaching hospital in China. Antimicrobial susceptibility and plasmid stability testing, plasmid conjugation, pulsed-field gel electrophoresis, and whole-genome sequencing (WGS) were performed to examine the mechanisms of resistance and virulence. The virulence of CR-hvKP was evaluated through serum-killing assay and Galleria mellonella lethality experiments. Phylogenetic analysis based on 16 highly homologous carbapenem-resistant K. pneumoniae (CRKP) producing KPC-2 isolates from the same hospital was conducted to elucidate the potential evolutionary pathway of CRKP co-producing NDM and KPC.
Results: WGS revealed that five isolates individually carried three unique plasmids: an IncFIB/IncHI1B-type virulence plasmid, IncFII/IncR-type plasmid harboring KPC-2 and IncC-type plasmid harboring NDM-1. The conjugation test results indicated that the transference of KPC-2 harboring IncFII/IncR-type plasmid was unsuccessful on their own, but could be transferred by forming a hybrid plasmid with the IncC plasmid harboring NDM. Further genetic analysis confirmed that the pJNKPN26-KPC plasmid was entirely integrated into the IncC-type plasmid via the copy-in route, which was mediated by TnAs1 and IS26.
Conclusion: KPC-NDM-CR-hvKP likely evolved from a KPC-2-CRKP ancestor and later acquired a highly transferable blaNDM-1 plasmid. ST11-KL64 CRKP exhibited enhanced plasticity. The identification of KPC-2-NDM-1-CR-hvKP highlights the urgent need for effective preventive strategies against aggravated accumulation of resistance genes.
期刊介绍:
Annals of Clinical Microbiology and Antimicrobials considers good quality, novel and international research of more than regional relevance. Research must include epidemiological and/or clinical information about isolates, and the journal covers the clinical microbiology of bacteria, viruses and fungi, as well as antimicrobial treatment of infectious diseases.
Annals of Clinical Microbiology and Antimicrobials is an open access, peer-reviewed journal focusing on information concerning clinical microbiology, infectious diseases and antimicrobials. The management of infectious disease is dependent on correct diagnosis and appropriate antimicrobial treatment, and with this in mind, the journal aims to improve the communication between laboratory and clinical science in the field of clinical microbiology and antimicrobial treatment. Furthermore, the journal has no restrictions on space or access; this ensures that the journal can reach the widest possible audience.