Organoids as a tool to study homeostatic and pathological immune-epithelial interactions in the gut.

IF 3.4 3区 医学 Q3 IMMUNOLOGY Clinical and experimental immunology Pub Date : 2024-09-16 DOI:10.1093/cei/uxad118
Emma Højmose Kromann, Ainize Peña Cearra, Joana F Neves
{"title":"Organoids as a tool to study homeostatic and pathological immune-epithelial interactions in the gut.","authors":"Emma Højmose Kromann, Ainize Peña Cearra, Joana F Neves","doi":"10.1093/cei/uxad118","DOIUrl":null,"url":null,"abstract":"<p><p>The intestine hosts the largest immune cell compartment in the body as a result of its continuous exposure to exogenous antigens. The intestinal barrier is formed by a single layer of epithelial cells which separate immune cells from the gut lumen. Bidirectional interactions between the epithelium and the immune compartment are critical for maintaining intestinal homeostasis by limiting infection, preventing excessive immune activation, and promoting tissue repair processes. However, our understanding of epithelial-immune interactions incomplete as the complexity of in vivo models can hinder mechanistic studies, cell culture models lack the cellular heterogeneity of the intestine and when established from primary cell can be difficult to maintain. In the last decade, organoids have emerged as a reliable model of the intestine, recapitulating key cellular and architectural features of native tissues. Herein, we provide an overview of how intestinal organoids are being co-cultured with immune cells leading to substantial advances in our understanding of immune-epithelial interactions in the gut. This has enabled new discoveries of the immune contribution to epithelial maintenance and regeneration both in homeostasis and in disease such as chronic inflammation, infection and cancer. Organoids can additionally be used to generate immune cells with a tissue-specific phenotype and to investigate the impact of disease associated risk genes on the intestinal immune environment. Accordingly, this review demonstrates the multitude of applications for intestinal organoids in immunological research and their potential for translational approaches.</p>","PeriodicalId":10268,"journal":{"name":"Clinical and experimental immunology","volume":" ","pages":"28-39"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404120/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cei/uxad118","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The intestine hosts the largest immune cell compartment in the body as a result of its continuous exposure to exogenous antigens. The intestinal barrier is formed by a single layer of epithelial cells which separate immune cells from the gut lumen. Bidirectional interactions between the epithelium and the immune compartment are critical for maintaining intestinal homeostasis by limiting infection, preventing excessive immune activation, and promoting tissue repair processes. However, our understanding of epithelial-immune interactions incomplete as the complexity of in vivo models can hinder mechanistic studies, cell culture models lack the cellular heterogeneity of the intestine and when established from primary cell can be difficult to maintain. In the last decade, organoids have emerged as a reliable model of the intestine, recapitulating key cellular and architectural features of native tissues. Herein, we provide an overview of how intestinal organoids are being co-cultured with immune cells leading to substantial advances in our understanding of immune-epithelial interactions in the gut. This has enabled new discoveries of the immune contribution to epithelial maintenance and regeneration both in homeostasis and in disease such as chronic inflammation, infection and cancer. Organoids can additionally be used to generate immune cells with a tissue-specific phenotype and to investigate the impact of disease associated risk genes on the intestinal immune environment. Accordingly, this review demonstrates the multitude of applications for intestinal organoids in immunological research and their potential for translational approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将器官组织作为研究肠道内免疫-上皮相互作用的稳态和病态的工具。
肠道是人体内最大的免疫细胞区,因为它不断接触外源抗原。肠道屏障由单层上皮细胞构成,将免疫细胞与肠腔隔开。上皮细胞和免疫细胞之间的双向互动对于通过限制感染、防止过度免疫激活和促进组织修复过程来维持肠道平衡至关重要。然而,由于体内模型的复杂性会阻碍机理研究,细胞培养模型缺乏肠道细胞的异质性,而且从原代细胞建立的模型可能难以维持,因此我们对上皮与免疫相互作用的了解并不全面。近十年来,器官组织已成为一种可靠的肠道模型,它再现了原生组织的关键细胞和结构特征。在这里,我们将概述肠道器官组织如何与免疫细胞共同培养,从而使我们对肠道免疫上皮相互作用的理解取得重大进展。这使我们对免疫对上皮维持和再生的贡献有了新的发现,无论是在体内平衡还是在慢性炎症、感染和癌症等疾病中。此外,器官组织还可用于生成具有组织特异性表型的免疫细胞,并研究疾病相关风险基因对肠道免疫环境的影响。因此,本综述展示了肠道器官组织在免疫学研究中的多种应用及其转化方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
2.20%
发文量
101
审稿时长
3-8 weeks
期刊介绍: Clinical & Experimental Immunology (established in 1966) is an authoritative international journal publishing high-quality research studies in translational and clinical immunology that have the potential to transform our understanding of the immunopathology of human disease and/or change clinical practice. The journal is focused on translational and clinical immunology and is among the foremost journals in this field, attracting high-quality papers from across the world. Translation is viewed as a process of applying ideas, insights and discoveries generated through scientific studies to the treatment, prevention or diagnosis of human disease. Clinical immunology has evolved as a field to encompass the application of state-of-the-art technologies such as next-generation sequencing, metagenomics and high-dimensional phenotyping to understand mechanisms that govern the outcomes of clinical trials.
期刊最新文献
A novel mouse model of myositis-associated interstitial lung disease was established by using TLR9 agonist combined with muscle homogenate. Past, Present and Future of Phase 3 Vaccine Trial Design: Rethinking Statistics for the 21st Century. Immunomodulatory effects of HYCO-3, a dual action CO-releaser/Nrf2 activator. Reduced IFNL1 and/or IFNL2, but not IFNL3 is associated with worse outcome in patients with COVID-19. A homogeneous bioluminescent inhibition immunoassay to detect anti-interferon gamma antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1