A distributed learning based on robust diffusion SGD over adaptive networks with noisy output data

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-03-26 DOI:10.1016/j.jpdc.2024.104883
Fatemeh Barani , Abdorreza Savadi , Hadi Sadoghi Yazdi
{"title":"A distributed learning based on robust diffusion SGD over adaptive networks with noisy output data","authors":"Fatemeh Barani ,&nbsp;Abdorreza Savadi ,&nbsp;Hadi Sadoghi Yazdi","doi":"10.1016/j.jpdc.2024.104883","DOIUrl":null,"url":null,"abstract":"<div><p>Outliers and noises are unavoidable factors that cause performance of the distributed learning algorithms to be severely reduced. Developing a robust algorithm is vital in applications such as system identification and forecasting stock market, in which noise on the desired signals may intensely divert the solutions. In this paper, we propose a Robust Diffusion Stochastic Gradient Descent (RDSGD) algorithm based on the pseudo-Huber loss function which can significantly suppress the effect of Gaussian and non-Gaussian noises on estimation performances in the adaptive networks. Performance and convergence behavior of RDSGD are assessed in presence of the <em>α</em>-stable and Mixed-Gaussian noises in the stationary and non-stationary environments. Simulation results show that the proposed algorithm can achieve both higher convergence rate and lower steady-state misadjustment than the conventional diffusion algorithms and several robust algorithms.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"190 ","pages":"Article 104883"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000479","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Outliers and noises are unavoidable factors that cause performance of the distributed learning algorithms to be severely reduced. Developing a robust algorithm is vital in applications such as system identification and forecasting stock market, in which noise on the desired signals may intensely divert the solutions. In this paper, we propose a Robust Diffusion Stochastic Gradient Descent (RDSGD) algorithm based on the pseudo-Huber loss function which can significantly suppress the effect of Gaussian and non-Gaussian noises on estimation performances in the adaptive networks. Performance and convergence behavior of RDSGD are assessed in presence of the α-stable and Mixed-Gaussian noises in the stationary and non-stationary environments. Simulation results show that the proposed algorithm can achieve both higher convergence rate and lower steady-state misadjustment than the conventional diffusion algorithms and several robust algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有噪声输出数据的自适应网络的鲁棒扩散 SGD 分布式学习
异常值和噪声是导致分布式学习算法性能严重下降的不可避免的因素。在系统识别和股市预测等应用中,所需的信号上的噪声可能会严重干扰解决方案,因此开发一种鲁棒性算法至关重要。本文提出了一种基于伪胡贝尔损失函数的鲁棒扩散随机梯度下降算法(RDSGD),它能显著抑制高斯和非高斯噪声对自适应网络估计性能的影响。我们评估了 RDSGD 在静态和非静态环境中存在 α 稳定和混合高斯噪声时的性能和收敛行为。仿真结果表明,与传统的扩散算法和几种鲁棒算法相比,所提出的算法能获得更高的收敛速率和更低的稳态失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
Enabling semi-supervised learning in intrusion detection systems Fault-tolerance in biswapped multiprocessor interconnection networks Editorial Board Front Matter 1 - Full Title Page (regular issues)/Special Issue Title page (special issues) Design and experimental evaluation of algorithms for optimizing the throughput of dispersed computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1