Latent Diffusion Models for Structural Component Design

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-03-22 DOI:10.1016/j.cad.2024.103707
Ethan Herron, Jaydeep Rade, Anushrut Jignasu, Baskar Ganapathysubramanian, Aditya Balu, Soumik Sarkar, Adarsh Krishnamurthy
{"title":"Latent Diffusion Models for Structural Component Design","authors":"Ethan Herron,&nbsp;Jaydeep Rade,&nbsp;Anushrut Jignasu,&nbsp;Baskar Ganapathysubramanian,&nbsp;Aditya Balu,&nbsp;Soumik Sarkar,&nbsp;Adarsh Krishnamurthy","doi":"10.1016/j.cad.2024.103707","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in generative modeling, namely Diffusion models, have revolutionized generative modeling, enabling high-quality image generation tailored to user needs. This paper proposes a framework for the generative design of structural components. Specifically, we employ a Latent Diffusion model to generate potential designs of a component that can satisfy a set of problem-specific loading conditions. One of the distinct advantages our approach offers over other generative approaches is the editing of existing designs. We train our model using a dataset of geometries obtained from structural topology optimization utilizing the SIMP algorithm. Consequently, our framework generates inherently near-optimal designs. Our work presents quantitative results that support the structural performance of the generated designs and the variability in potential candidate designs. Furthermore, we provide evidence of the scalability of our framework by operating over voxel domains with resolutions varying from <span><math><mrow><mn>3</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>12</mn><msup><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. Our framework can be used as a starting point for generating novel near-optimal designs similar to topology-optimized designs.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000344","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in generative modeling, namely Diffusion models, have revolutionized generative modeling, enabling high-quality image generation tailored to user needs. This paper proposes a framework for the generative design of structural components. Specifically, we employ a Latent Diffusion model to generate potential designs of a component that can satisfy a set of problem-specific loading conditions. One of the distinct advantages our approach offers over other generative approaches is the editing of existing designs. We train our model using a dataset of geometries obtained from structural topology optimization utilizing the SIMP algorithm. Consequently, our framework generates inherently near-optimal designs. Our work presents quantitative results that support the structural performance of the generated designs and the variability in potential candidate designs. Furthermore, we provide evidence of the scalability of our framework by operating over voxel domains with resolutions varying from 323 to 1283. Our framework can be used as a starting point for generating novel near-optimal designs similar to topology-optimized designs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于结构组件设计的潜在扩散模型
生成模型(即扩散模型)的最新进展彻底改变了生成模型,使高质量的图像生成符合用户需求。本文提出了一个结构组件生成设计框架。具体来说,我们采用潜在扩散模型来生成组件的潜在设计,以满足特定问题的负载条件。与其他生成式方法相比,我们的方法的一个显著优势是可以编辑现有设计。我们使用利用 SIMP 算法从结构拓扑优化中获得的几何图形数据集来训练我们的模型。因此,我们的框架能生成接近最优的设计。我们的工作提供了定量结果,支持生成设计的结构性能和潜在候选设计的可变性。此外,我们通过在分辨率从 323 到 1283 不等的体素域上运行,证明了我们框架的可扩展性。我们的框架可以作为一个起点,用于生成类似拓扑优化设计的新型近优设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning. Evaluation of the potential of achachairu peel (Garcinia humilis) for the fortification of cereal-based foods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1