Linking mitochondria metabolism, developmental timing, and human brain evolution

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-03-30 DOI:10.1016/j.gde.2024.102182
Pierre Casimir , Ryohei Iwata , Pierre Vanderhaeghen
{"title":"Linking mitochondria metabolism, developmental timing, and human brain evolution","authors":"Pierre Casimir ,&nbsp;Ryohei Iwata ,&nbsp;Pierre Vanderhaeghen","doi":"10.1016/j.gde.2024.102182","DOIUrl":null,"url":null,"abstract":"<div><p>Changes in developmental timing are an important factor of evolution in organ shape and function. This is particularly striking for human brain development, which, compared with other mammals, is considerably prolonged at the level of the cerebral cortex, resulting in brain neoteny. Here, we review recent findings that indicate that mitochondria and metabolism contribute to species differences in the tempo of cortical neuron development. Mitochondria display species-specific developmental timeline and metabolic activity patterns that are highly correlated with the speed of neuron maturation. Enhancing mitochondrial activity in human cortical neurons results in their accelerated maturation, while its reduction leads to decreased maturation rates in mouse neurons. Together with other global and gene-specific mechanisms, mitochondria thus act as a cellular hourglass of neuronal developmental tempo and may thereby contribute to species-specific features of human brain ontogeny.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000315/pdfft?md5=77551de0737d6c44e46c6a8b5dbf0cd1&pid=1-s2.0-S0959437X24000315-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000315","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Changes in developmental timing are an important factor of evolution in organ shape and function. This is particularly striking for human brain development, which, compared with other mammals, is considerably prolonged at the level of the cerebral cortex, resulting in brain neoteny. Here, we review recent findings that indicate that mitochondria and metabolism contribute to species differences in the tempo of cortical neuron development. Mitochondria display species-specific developmental timeline and metabolic activity patterns that are highly correlated with the speed of neuron maturation. Enhancing mitochondrial activity in human cortical neurons results in their accelerated maturation, while its reduction leads to decreased maturation rates in mouse neurons. Together with other global and gene-specific mechanisms, mitochondria thus act as a cellular hourglass of neuronal developmental tempo and may thereby contribute to species-specific features of human brain ontogeny.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将线粒体代谢、发育时间与人类大脑进化联系起来
发育时间的变化是器官形状和功能进化的一个重要因素。与其他哺乳动物相比,人类大脑皮层的发育时间大大延长,导致大脑新生。在此,我们回顾了最近的研究结果,这些结果表明线粒体和新陈代谢导致了大脑皮层神经元发育速度的物种差异。线粒体显示出与神经元成熟速度高度相关的物种特异性发育时间表和代谢活动模式。提高人类大脑皮层神经元的线粒体活性会加速其成熟,而降低线粒体活性则会降低小鼠神经元的成熟速度。因此,线粒体与其他全球性机制和基因特异性机制一起,充当了神经元发育节奏的细胞沙漏,从而可能促成人类大脑本体发育的物种特异性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
Engineering immune organoids to regenerate host immune system Better together: how cooperativity influences transcriptional bursting Strategies for programmable manipulation of alternative splicing Editorial overview: Epitranscriptomics: Exploring a new frontier in health and disease Emerging interactions between RNA methylation and chromatin architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1