Toward high stability of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material with zirconium substitution for advanced sodium-ion batteries

Chunyu Jiang, Yingshuai Wang, Yuhang Xin, Xiangyu Ding, Shengkai Liu, Yanfei Pang, Baorui Chen, Yusong Wang, Lei Liu, Feng Wu, Hongcai Gao
{"title":"Toward high stability of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material with zirconium substitution for advanced sodium-ion batteries","authors":"Chunyu Jiang,&nbsp;Yingshuai Wang,&nbsp;Yuhang Xin,&nbsp;Xiangyu Ding,&nbsp;Shengkai Liu,&nbsp;Yanfei Pang,&nbsp;Baorui Chen,&nbsp;Yusong Wang,&nbsp;Lei Liu,&nbsp;Feng Wu,&nbsp;Hongcai Gao","doi":"10.1002/cnl2.115","DOIUrl":null,"url":null,"abstract":"<p>We successfully synthesized a series of O3-type NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3−<i>x</i></sub>Zr<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0, 0.01, 0.02, 0.04) cathode materials by the solid-state reaction method. Energy dispersion spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy results confirmed the successful incorporation of Zr elements into the lattice to substitute Mn. Due to the introduction of Zr<sup>4+</sup>, the crystal structure modulation of O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> has been realized. By increasing the Zr<sup>4+</sup> content, the width of the sodium diffusion layer expands, thereby facilitating the diffusion of sodium ions. Consequently, the material exhibits a remarkable enhancement in high-rate capability. At the same time, increasing the Zr<sup>4+</sup> content results in a notable decrease in both the average bond length of TM−O and the thickness of the TMO<sub>6</sub> octahedron in the transition metal layer, resulting in a significant improvement in the cycling performance and structural stability of the cathode material. Additionally, the in-situ XRD results demonstrate that the optimized cathode composition of O3-NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3–0.02</sub>Zr<sub>0.02</sub>O<sub>2</sub> (NFMZ2) undergoes a reversible phase transition of O3 → O3 + P3 → P3 → O3 + P3 → O3 during the charge–discharge process.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 2","pages":"233-244"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We successfully synthesized a series of O3-type NaNi1/3Fe1/3Mn1/3−xZrxO2 (x = 0, 0.01, 0.02, 0.04) cathode materials by the solid-state reaction method. Energy dispersion spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy results confirmed the successful incorporation of Zr elements into the lattice to substitute Mn. Due to the introduction of Zr4+, the crystal structure modulation of O3-NaNi1/3Fe1/3Mn1/3O2 has been realized. By increasing the Zr4+ content, the width of the sodium diffusion layer expands, thereby facilitating the diffusion of sodium ions. Consequently, the material exhibits a remarkable enhancement in high-rate capability. At the same time, increasing the Zr4+ content results in a notable decrease in both the average bond length of TM−O and the thickness of the TMO6 octahedron in the transition metal layer, resulting in a significant improvement in the cycling performance and structural stability of the cathode material. Additionally, the in-situ XRD results demonstrate that the optimized cathode composition of O3-NaNi1/3Fe1/3Mn1/3–0.02Zr0.02O2 (NFMZ2) undergoes a reversible phase transition of O3 → O3 + P3 → P3 → O3 + P3 → O3 during the charge–discharge process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现先进钠离子电池用锆替代 O3 型 NaNi1/3Fe1/3Mn1/3O2 正极材料的高稳定性
我们采用固态反应法成功合成了一系列 O3 型 NaNi1/3Fe1/3Mn1/3-xZrxO2 (x = 0, 0.01, 0.02, 0.04) 阴极材料。能量色散光谱、X 射线衍射(XRD)和 X 射线光电子能谱结果证实,成功地将 Zr 元素掺入晶格以替代 Mn。由于 Zr4+ 的引入,实现了 O3-NaNi1/3Fe1/3Mn1/3O2 晶体结构的调制。通过增加 Zr4+ 的含量,钠扩散层的宽度扩大,从而促进了钠离子的扩散。因此,该材料的高速率能力显著增强。同时,增加 Zr4+ 的含量会显著降低过渡金属层中 TM-O 的平均键长和 TMO6 八面体的厚度,从而显著改善阴极材料的循环性能和结构稳定性。此外,原位 XRD 结果表明,O3-NaNi1/3Fe1/3Mn1/3-0.02Zr0.02O2(NFMZ2)的优化阴极成分在充放电过程中发生了 O3 → O3 + P3 → P3 → O3 + P3 → O3 的可逆相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Front Cover: Carbon Neutralization, Volume 3, Issue 6, November 2024 Inside Back Cover Image: Carbon Neutralization, Volume 3, Issue 6, November 2024 Back Cover Image: Carbon Neutralization, Volume 3, Issue 6, November 2024 A chronicle of titanium niobium oxide materials for high-performance lithium-ion batteries: From laboratory to industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1