CD8-Targeted IL2 Unleashes Tumor-Specific Immunity in Human Cancer Tissue by Reviving the Dysfunctional T-cell Pool.

IF 29.7 1区 医学 Q1 ONCOLOGY Cancer discovery Pub Date : 2024-07-01 DOI:10.1158/2159-8290.CD-23-1263
Paulien Kaptein, Nadine Slingerland, Christina Metoikidou, Felix Prinz, Simone Brokamp, Mercedes Machuca-Ostos, Guido de Roo, Ton N M Schumacher, Yik A Yeung, Kelly D Moynihan, Ivana M Djuretic, Daniela S Thommen
{"title":"CD8-Targeted IL2 Unleashes Tumor-Specific Immunity in Human Cancer Tissue by Reviving the Dysfunctional T-cell Pool.","authors":"Paulien Kaptein, Nadine Slingerland, Christina Metoikidou, Felix Prinz, Simone Brokamp, Mercedes Machuca-Ostos, Guido de Roo, Ton N M Schumacher, Yik A Yeung, Kelly D Moynihan, Ivana M Djuretic, Daniela S Thommen","doi":"10.1158/2159-8290.CD-23-1263","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1226-1251"},"PeriodicalIF":29.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11215409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-23-1263","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor-specific CD8+ T cells are key effectors of antitumor immunity but are often rendered dysfunctional in the tumor microenvironment. Immune-checkpoint blockade can restore antitumor T-cell function in some patients; however, most do not respond to this therapy, often despite T-cell infiltration in their tumors. We here explored a CD8-targeted IL2 fusion molecule (CD8-IL2) to selectively reactivate intratumoral CD8+ T cells in patient-derived tumor fragments. Treatment with CD8-IL2 broadly armed intratumoral CD8+ T cells with enhanced effector capacity, thereby specifically enabling reinvigoration of the dysfunctional T-cell pool to elicit potent immune activity. Notably, the revival of dysfunctional T cells to mediate effector activity by CD8-IL2 depended on simultaneous antigen recognition and was quantitatively and qualitatively superior to that achieved by PD-1 blockade. Finally, CD8-IL2 was able to functionally reinvigorate T cells in tumors resistant to anti-PD-1, underscoring its potential as a novel treatment strategy for patients with cancer. Significance: Reinvigorating T cells is crucial for response to checkpoint blockade therapy. However, emerging evidence suggests that the PD-1/PD-L1 axis is not the sole impediment for activating T cells within tumors. Selectively targeting cytokines toward specific T-cell subsets might overcome these barriers and stimulate T cells within resistant tumors. See related article by Moynihan et al., p. 1206 (32).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD8靶向IL2通过激活功能失调的T细胞池,释放人体癌症组织中的肿瘤特异性免疫力。
肿瘤特异性 CD8+ T 细胞是抗肿瘤免疫的关键效应器,但在肿瘤微环境中往往功能失调。免疫检查点阻断疗法可以恢复部分患者的抗肿瘤T细胞功能,但大多数患者对这种疗法没有反应,尽管肿瘤中往往有T细胞浸润。我们在此研究了一种 CD8 靶向 IL2 融合分子(CD8-IL2),以选择性地重新激活患者肿瘤片段中的瘤内 CD8+ T 细胞。用CD8-IL2治疗可广泛武装瘤内CD8+ T细胞,增强其效应能力,从而特异性地使功能失调的T细胞池重获活力,激发强大的免疫活性。值得注意的是,CD8-IL2 能使功能失调的 T 细胞恢复介导效应活性,这取决于同时进行的抗原识别,而且在数量和质量上都优于 PD-1 阻断疗法。最后,CD8-IL2能够在抗PD-1的肿瘤中重新激活T细胞的功能,突出了其作为癌症患者新型治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
期刊最新文献
NOTCH1 drives sexually dimorphic immune responses in hepatocellular carcinoma. PKN2 is a dependency of the mesenchymal-like cancer cell state. The UBA1-STUB1 axis mediates cancer immune escape and resistance to checkpoint blockade Survivin promotes stem cell competence for skin cancer initiation Sympathetic Neurons Promote Small Cell Lung Cancer Through the Beta-2 Adrenergic Receptor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1