P L Parreira, A U Fonseca, F Soares, M B Conte, M F Rabahi
{"title":"Chest X-ray evaluation using machine learning to support the early diagnosis of pulmonary TB.","authors":"P L Parreira, A U Fonseca, F Soares, M B Conte, M F Rabahi","doi":"10.5588/ijtld.23.0230","DOIUrl":null,"url":null,"abstract":"<p><p><sec id=\"st1\"><title>BACKGROUND</title>TB is a public health problem, and its diagnosis can be challenging. Among imaging methods, chest X-ray (CXR) is the leading choice for assessing pulmonary TB (PTB). Recent advancements in the field of artificial intelligence have stimulated studies evaluating the performance of machine learning (ML) for medical diagnosis. This study validated a new original Brazilian tool, the XmarTB, applied to CXR images to support the early diagnosis of PTB.</sec><sec id=\"st2\"><title>METHODS</title>An ML model was trained on 3,800 normal images, 3,800 abnormal CXRs without PTB and 1,376 with PTB manifestations from the publicly available TBX11K database.</sec><sec id=\"st3\"><title>RESULTS</title>The binary classification can distinguish between normal and abnormal CXR with a sensitivity of 99.4% and specificity of 99.4%. The XmarTB tool had a sensitivity of 98.1% and a specificity of 99.7% in detecting TB cases among CXRs with abnormal CXRs; sensitivity was 96.7% and specificity 98.7% in detecting TB cases among all samples.</sec><sec id=\"st4\"><title>CONCLUSION</title>This diagnostic tool can accurately and automatically detect abnormal CXRs and satisfactorily differentiate PTB from other pulmonary diseases. This tool holds significant promise in aiding the proactive detection of TB cases, providing rapid and accurate support for early diagnosis.</sec>.</p>","PeriodicalId":14411,"journal":{"name":"International Journal of Tuberculosis and Lung Disease","volume":"28 4","pages":"171-175"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Tuberculosis and Lung Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5588/ijtld.23.0230","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUNDTB is a public health problem, and its diagnosis can be challenging. Among imaging methods, chest X-ray (CXR) is the leading choice for assessing pulmonary TB (PTB). Recent advancements in the field of artificial intelligence have stimulated studies evaluating the performance of machine learning (ML) for medical diagnosis. This study validated a new original Brazilian tool, the XmarTB, applied to CXR images to support the early diagnosis of PTB.METHODSAn ML model was trained on 3,800 normal images, 3,800 abnormal CXRs without PTB and 1,376 with PTB manifestations from the publicly available TBX11K database.RESULTSThe binary classification can distinguish between normal and abnormal CXR with a sensitivity of 99.4% and specificity of 99.4%. The XmarTB tool had a sensitivity of 98.1% and a specificity of 99.7% in detecting TB cases among CXRs with abnormal CXRs; sensitivity was 96.7% and specificity 98.7% in detecting TB cases among all samples.CONCLUSIONThis diagnostic tool can accurately and automatically detect abnormal CXRs and satisfactorily differentiate PTB from other pulmonary diseases. This tool holds significant promise in aiding the proactive detection of TB cases, providing rapid and accurate support for early diagnosis..
期刊介绍:
The International Journal of Tuberculosis and Lung Disease publishes articles on all aspects of lung health, including public health-related issues such as training programmes, cost-benefit analysis, legislation, epidemiology, intervention studies and health systems research. The IJTLD is dedicated to the continuing education of physicians and health personnel and the dissemination of information on tuberculosis and lung health world-wide.