Juan C. Montes-Herrera, Emiliano Cimoli, Vonda J. Cummings, Roberta D'Archino, Wendy A. Nelson, Arko Lucieer, Vanessa Lucieer
{"title":"Quantifying pigment content in crustose coralline algae using hyperspectral imaging: A case study with Tethysphytum antarcticum (Ross Sea, Antarctica)","authors":"Juan C. Montes-Herrera, Emiliano Cimoli, Vonda J. Cummings, Roberta D'Archino, Wendy A. Nelson, Arko Lucieer, Vanessa Lucieer","doi":"10.1111/jpy.13449","DOIUrl":null,"url":null,"abstract":"<p>Crustose coralline algae (CCA) are a highly diverse group of habitat-forming, calcifying red macroalgae (Rhodophyta) with unique adaptations to diverse irradiance regimes. A distinctive CCA phenotype adaptation, which allows them to maximize photosynthetic performance in low light, is their content of a specific group of light-harvesting pigments called phycobilins. In this study, we assessed the potential of noninvasive hyperspectral imaging (HSI) in the visible spectrum (400–800 nm) to describe the phenotypic variability in phycobilin content of an Antarctic coralline, <i>Tethysphytum antarcticum</i> (Hapalidiales), from two distinct locations. We validated our measurements with pigment extractions and spectrophotometry analysis, in addition to DNA barcoding using the <i>psb</i>A marker. Targeted spectral indices were developed and correlated with phycobilin content using linear mixed models (<i>R</i><sup>2</sup> = 0.64–0.7). Once applied to the HSI, the models revealed the distinct phycoerythrin spatial distribution in the two site-specific CCA phenotypes, with thin and thick crusts, respectively. This study advances the capabilities of hyperspectral imaging as a tool to quantitatively study CCA pigmentation in relation to their phenotypic plasticity, which can be applied in laboratory studies and potentially in situ surveys using underwater hyperspectral imaging systems.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13449","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13449","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Crustose coralline algae (CCA) are a highly diverse group of habitat-forming, calcifying red macroalgae (Rhodophyta) with unique adaptations to diverse irradiance regimes. A distinctive CCA phenotype adaptation, which allows them to maximize photosynthetic performance in low light, is their content of a specific group of light-harvesting pigments called phycobilins. In this study, we assessed the potential of noninvasive hyperspectral imaging (HSI) in the visible spectrum (400–800 nm) to describe the phenotypic variability in phycobilin content of an Antarctic coralline, Tethysphytum antarcticum (Hapalidiales), from two distinct locations. We validated our measurements with pigment extractions and spectrophotometry analysis, in addition to DNA barcoding using the psbA marker. Targeted spectral indices were developed and correlated with phycobilin content using linear mixed models (R2 = 0.64–0.7). Once applied to the HSI, the models revealed the distinct phycoerythrin spatial distribution in the two site-specific CCA phenotypes, with thin and thick crusts, respectively. This study advances the capabilities of hyperspectral imaging as a tool to quantitatively study CCA pigmentation in relation to their phenotypic plasticity, which can be applied in laboratory studies and potentially in situ surveys using underwater hyperspectral imaging systems.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.