Diffusion tensor imaging in anisotropic tissues: application of reduced gradient vector schemes in peripheral nerves.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2024-04-02 DOI:10.1186/s41747-024-00444-2
Olivia Foesleitner, Alba Sulaj, Volker Sturm, Moritz Kronlage, Fabian Preisner, Zoltan Kender, Martin Bendszus, Julia Szendroedi, Sabine Heiland, Daniel Schwarz
{"title":"Diffusion tensor imaging in anisotropic tissues: application of reduced gradient vector schemes in peripheral nerves.","authors":"Olivia Foesleitner, Alba Sulaj, Volker Sturm, Moritz Kronlage, Fabian Preisner, Zoltan Kender, Martin Bendszus, Julia Szendroedi, Sabine Heiland, Daniel Schwarz","doi":"10.1186/s41747-024-00444-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In contrast to the brain, fibers within peripheral nerves have distinct monodirectional structure questioning the necessity of complex multidirectional gradient vector schemes for DTI. This proof-of-concept study investigated the diagnostic utility of reduced gradient vector schemes in peripheral nerve DTI.</p><p><strong>Methods: </strong>Three-Tesla magnetic resonance neurography of the tibial nerve using 20-vector DTI (DTI<sub>20</sub>) was performed in 10 healthy volunteers, 12 patients with type 2 diabetes, and 12 age-matched healthy controls. From the full DTI<sub>20</sub> dataset, three reduced datasets including only two or three vectors along the x- and/or y- and z-axes were built to calculate major parameters. The influence of nerve angulation and intraneural connective tissue was assessed. The area under the receiver operating characteristics curve (ROC-AUC) was used for analysis.</p><p><strong>Results: </strong>Simplified datasets achieved excellent diagnostic accuracy equal to DTI<sub>20</sub> (ROC-AUC 0.847-0.868, p ≤ 0.005), but compared to DTI<sub>20</sub>, the reduced models yielded mostly lower absolute values of DTI scalars: median fractional anisotropy (FA) ≤ 0.12; apparent diffusion coefficient (ADC) ≤ 0.25; axial diffusivity ≤ 0.96, radial diffusivity ≤ 0.07). The precision of FA and ADC with the three-vector model was closest to DTI<sub>20</sub>. Intraneural connective tissue was negatively correlated with FA and ADC (r ≥ -0.49, p < 0.001). Small deviations of nerve angulation had little effect on FA accuracy.</p><p><strong>Conclusions: </strong>In peripheral nerves, bulk tissue DTI metrics can be approximated with only three predefined gradient vectors along the scanner's main axes, yielding similar diagnostic accuracy as a 20-vector DTI, resulting in substantial scan time reduction.</p><p><strong>Relevance statement: </strong>DTI bulk tissue parameters of peripheral nerves can be calculated with only three predefined gradient vectors at similar diagnostic performance as a standard DTI but providing a substantial scan time reduction.</p><p><strong>Key points: </strong>• In peripheral nerves, DTI parameters can be approximated using only three gradient vectors. • The simplified model achieves a similar diagnostic performance as a standard DTI. • The simplified model allows for a significant acceleration of image acquisition. • This can help to introduce multi-b-value DTI techniques into clinical practice.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"8 1","pages":"37"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00444-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In contrast to the brain, fibers within peripheral nerves have distinct monodirectional structure questioning the necessity of complex multidirectional gradient vector schemes for DTI. This proof-of-concept study investigated the diagnostic utility of reduced gradient vector schemes in peripheral nerve DTI.

Methods: Three-Tesla magnetic resonance neurography of the tibial nerve using 20-vector DTI (DTI20) was performed in 10 healthy volunteers, 12 patients with type 2 diabetes, and 12 age-matched healthy controls. From the full DTI20 dataset, three reduced datasets including only two or three vectors along the x- and/or y- and z-axes were built to calculate major parameters. The influence of nerve angulation and intraneural connective tissue was assessed. The area under the receiver operating characteristics curve (ROC-AUC) was used for analysis.

Results: Simplified datasets achieved excellent diagnostic accuracy equal to DTI20 (ROC-AUC 0.847-0.868, p ≤ 0.005), but compared to DTI20, the reduced models yielded mostly lower absolute values of DTI scalars: median fractional anisotropy (FA) ≤ 0.12; apparent diffusion coefficient (ADC) ≤ 0.25; axial diffusivity ≤ 0.96, radial diffusivity ≤ 0.07). The precision of FA and ADC with the three-vector model was closest to DTI20. Intraneural connective tissue was negatively correlated with FA and ADC (r ≥ -0.49, p < 0.001). Small deviations of nerve angulation had little effect on FA accuracy.

Conclusions: In peripheral nerves, bulk tissue DTI metrics can be approximated with only three predefined gradient vectors along the scanner's main axes, yielding similar diagnostic accuracy as a 20-vector DTI, resulting in substantial scan time reduction.

Relevance statement: DTI bulk tissue parameters of peripheral nerves can be calculated with only three predefined gradient vectors at similar diagnostic performance as a standard DTI but providing a substantial scan time reduction.

Key points: • In peripheral nerves, DTI parameters can be approximated using only three gradient vectors. • The simplified model achieves a similar diagnostic performance as a standard DTI. • The simplified model allows for a significant acceleration of image acquisition. • This can help to introduce multi-b-value DTI techniques into clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各向异性组织中的扩散张量成像:减少梯度矢量方案在周围神经中的应用。
背景:与大脑不同,周围神经中的纤维具有明显的单向结构,这就对 DTI 中复杂的多向梯度矢量方案的必要性提出了质疑。这项概念验证研究调查了减少梯度矢量方案在周围神经 DTI 中的诊断效用:方法:在 10 名健康志愿者、12 名 2 型糖尿病患者和 12 名年龄匹配的健康对照组中,使用 20 向量 DTI(DTI20)对胫神经进行三特斯拉磁共振神经成像。根据完整的 DTI20 数据集,建立了三个缩小数据集,其中仅包括沿 x 轴和/或 y 轴和 z 轴的两个或三个向量,以计算主要参数。评估了神经角度和神经内结缔组织的影响。结果显示,简化后的数据集可实现更高的准确性:简化数据集的诊断准确性与 DTI20 相当(ROC-AUC 0.847-0.868,p ≤ 0.005),但与 DTI20 相比,简化模型得到的 DTI 标量绝对值大多较低:中位分数各向异性(FA)≤ 0.12;表观扩散系数(ADC)≤ 0.25;轴向扩散系数≤ 0.96,径向扩散系数≤ 0.07)。三矢量模型的 FA 和 ADC 精确度最接近 DTI20。神经内结缔组织与 FA 和 ADC 呈负相关(r≥-0.49,p 结论:神经内结缔组织与 FA 和 ADC 呈负相关(r≥-0.49,p 结论:神经内结缔组织与 FA 和 ADC 呈负相关):在外周神经中,大块组织 DTI 指标只需沿扫描仪主轴使用三个预定义梯度矢量即可近似得出,其诊断准确性与 20 矢量 DTI 相似,从而大大缩短了扫描时间:仅用三个预定义梯度矢量就能计算外周神经的 DTI 体积组织参数,其诊断性能与标准 DTI 相似,但却大大缩短了扫描时间:- 在周围神经中,只需使用三个梯度矢量即可近似计算 DTI 参数。- 简化模型的诊断性能与标准 DTI 相似。- 简化模型可大大加快图像采集速度。- 这有助于将多 B 值 DTI 技术引入临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
An AI deep learning algorithm for detecting pulmonary nodules on ultra-low-dose CT in an emergency setting: a reader study. Evaluation of pulmonary artery pressure, blood indices, and myocardial microcirculation in rats returning from high altitude to moderate altitude. Image biomarkers and explainable AI: handcrafted features versus deep learned features. Technical feasibility of automated blur detection in digital mammography using convolutional neural network. Quantification of breast biopsy clip marker artifact on routine breast MRI sequences: a phantom study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1