Developmental and adult stress: effects of steroids and neurosteroids.

IF 2.6 4区 心理学 Q2 BEHAVIORAL SCIENCES Stress-The International Journal on the Biology of Stress Pub Date : 2024-01-01 Epub Date: 2024-04-02 DOI:10.1080/10253890.2024.2317856
Isha R Gore, Elizabeth Gould
{"title":"Developmental and adult stress: effects of steroids and neurosteroids.","authors":"Isha R Gore, Elizabeth Gould","doi":"10.1080/10253890.2024.2317856","DOIUrl":null,"url":null,"abstract":"<p><p>In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.</p>","PeriodicalId":51173,"journal":{"name":"Stress-The International Journal on the Biology of Stress","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress-The International Journal on the Biology of Stress","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10253890.2024.2317856","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发育期和成年期的压力:类固醇和神经类固醇的影响。
对于人类来说,早期生活中的逆境对日后患神经精神疾病的易感性有着深远的影响。对啮齿类动物的研究表明,出生后早期经历的压力会对大脑发育产生持久影响。糖皮质激素和性类固醇由胆固醇在内分泌腺和大脑中产生;这些分子与核和膜相关的类固醇受体结合。与其他也可在大脑中产生的类固醇不同,神经类固醇专门与神经递质受体而非类固醇受体结合。类固醇、神经类固醇和压力之间的关系是多方面的,目前还不完全清楚。然而,研究表明,在发育阶段和成年后的应激范例中,孕激素、雄激素、雌激素、糖皮质激素及其神经活性代谢产物的水平都发生了改变,这有力地表明这些分子可能是应激对大脑回路和行为产生影响的重要因素。在这篇综述中,我们将讨论发育期和成年期压力对大脑各组成部分(包括神经元、神经胶质细胞和神经元周围网)的影响,重点是性类固醇和神经类固醇。进一步了解早期逆境如何影响大脑类固醇和神经类固醇调节的复杂系统,将有助于确定治疗压力相关疾病的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
25
审稿时长
6-12 weeks
期刊介绍: The journal Stress aims to provide scientists involved in stress research with the possibility of reading a more integrated view of the field. Peer reviewed papers, invited reviews and short communications will deal with interdisciplinary aspects of stress in terms of: the mechanisms of stressful stimulation, including within and between individuals; the physiological and behavioural responses to stress, and their regulation, in both the short and long term; adaptive mechanisms, coping strategies and the pathological consequences of stress. Stress will publish the latest developments in physiology, neurobiology, molecular biology, genetics research, immunology, and behavioural studies as they impact on the understanding of stress and its adverse consequences and their amelioration. Specific approaches may include transgenic/knockout animals, developmental/programming studies, electrophysiology, histochemistry, neurochemistry, neuropharmacology, neuroanatomy, neuroimaging, endocrinology, autonomic physiology, immunology, chronic pain, ethological and other behavioural studies and clinical measures.
期刊最新文献
Inhibition of prefrontal cortex parvalbumin interneurons mitigates behavioral and physiological sequelae of chronic stress in male mice. Maternal prenatal distress exposure negatively associates with the stability of neonatal frontoparietal network. Decreased amygdala-sensorimotor connectivity mediates the association between prenatal stress and broad autism phenotype in young adults: Project Ice Storm. Accumbal μ-opioid receptors and salt taste-elicited hedonic responses in a rodent model of prenatal adversity, and their correlates using human functional genomics. Behavior, synaptic mitochondria, and microglia are differentially impacted by chronic adolescent stress and repeated endotoxin exposure in male and female rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1