Mathieu Simon , Michael Indermaur , Denis Schenk , Benjamin Voumard , Ivan Zderic , Dominic Mischler , Michael Pretterklieber , Philippe Zysset
{"title":"Homogenized finite element analysis of distal tibia sections: Achievements and limitations","authors":"Mathieu Simon , Michael Indermaur , Denis Schenk , Benjamin Voumard , Ivan Zderic , Dominic Mischler , Michael Pretterklieber , Philippe Zysset","doi":"10.1016/j.bonr.2024.101752","DOIUrl":null,"url":null,"abstract":"<div><p>High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro-finite element (μFE) analysis allows accurate prediction of stiffness and ultimate load of standardised (∼1 cm) distal radius and tibia sections. An alternative homogenized finite element method (hFE) was recently validated to compute the ultimate load of larger (∼2 cm) distal radius sections that include Colles' fracture sites. Since the mechanical integrity of the weight-bearing distal tibia is gaining clinical interest, it has been shown that the same properties can be used to predict the strength of both distal segments of the radius and the tibia. Despite the capacity of hFE to predict structural properties of distal segments of the radius and the tibia, the limitations of such homogenization scheme remain unclear. Therefore, the objective of this study is to build a complete mechanical data set of the compressive behavior of distal segments of the tibia and to compare quantitatively the structural properties with the hFE predictions. As a further aim, it is intended to verify whether hFE is also able to capture the post-yield strain localisation or fracture zones in such a bone section, despite the absence of strain softening in the constitutive model.</p><p>Twenty-five fresh-frozen distal parts of tibias of human donors were used in this study. Sections were cut corresponding to an in-house triple-stack protocol HR-pQCT scan, lapped, and scanned using micro computed tomography (μCT). The sections were tested in compression until failure, unloaded and scanned again in μCT. Volumetric bone mineral density (vBMD) and bone mineral content (BMC) were correlated to compression test results. hFE analysis was performed in order to compare computational predictions (stiffness, yield load and plastic deformation field pattern) with the compressive experiment. Namely, strain localization was assessed based on digital volume correlation (DVC) results and qualitatively compared to hFE predictions by comparing mid-slices patterns.</p><p>Bone mineral content (BMC) showed a good correlation with stiffness (R<sup>2</sup> = 0.92) and yield (R<sup>2</sup> = 0.88). Structural parameters also showed good agreement between the experiment and hFE for both stiffness (R<sup>2</sup> = 0.96, slope = 1.05 with 95 % CI [0.97, 1.14]) and yield (R<sup>2</sup> = 0.95, slope = 1.04 [0.94, 1.13]). The qualitative comparison between hFE and DVC strain localization patterns allowed the classification of the samples into 3 categories: bad (15 sections), semi (8), and good agreement (2).</p><p>The good correlations between BMC or hFE and experiment for structural parameters were similar to those obtained previously for the distal part of the radius. The failure zones determined by hFE corresponded to registration only in 8 % of the cases. We attribute these discrepancies to local elastic/plastic buckling effects that are not captured by the continuum-based FE approach exempt from strain softening. A way to improve strain localization hFE prediction would be to use longer distal segments with intact cortical shells, as done for the radius. To conclude, the used hFE scheme captures the elastic and yield response of the tibia sections reliably but not the subsequent failure process.</p></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352187224000196/pdfft?md5=1c996085a31ff4a54c97a986f15ee1c2&pid=1-s2.0-S2352187224000196-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187224000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro-finite element (μFE) analysis allows accurate prediction of stiffness and ultimate load of standardised (∼1 cm) distal radius and tibia sections. An alternative homogenized finite element method (hFE) was recently validated to compute the ultimate load of larger (∼2 cm) distal radius sections that include Colles' fracture sites. Since the mechanical integrity of the weight-bearing distal tibia is gaining clinical interest, it has been shown that the same properties can be used to predict the strength of both distal segments of the radius and the tibia. Despite the capacity of hFE to predict structural properties of distal segments of the radius and the tibia, the limitations of such homogenization scheme remain unclear. Therefore, the objective of this study is to build a complete mechanical data set of the compressive behavior of distal segments of the tibia and to compare quantitatively the structural properties with the hFE predictions. As a further aim, it is intended to verify whether hFE is also able to capture the post-yield strain localisation or fracture zones in such a bone section, despite the absence of strain softening in the constitutive model.
Twenty-five fresh-frozen distal parts of tibias of human donors were used in this study. Sections were cut corresponding to an in-house triple-stack protocol HR-pQCT scan, lapped, and scanned using micro computed tomography (μCT). The sections were tested in compression until failure, unloaded and scanned again in μCT. Volumetric bone mineral density (vBMD) and bone mineral content (BMC) were correlated to compression test results. hFE analysis was performed in order to compare computational predictions (stiffness, yield load and plastic deformation field pattern) with the compressive experiment. Namely, strain localization was assessed based on digital volume correlation (DVC) results and qualitatively compared to hFE predictions by comparing mid-slices patterns.
Bone mineral content (BMC) showed a good correlation with stiffness (R2 = 0.92) and yield (R2 = 0.88). Structural parameters also showed good agreement between the experiment and hFE for both stiffness (R2 = 0.96, slope = 1.05 with 95 % CI [0.97, 1.14]) and yield (R2 = 0.95, slope = 1.04 [0.94, 1.13]). The qualitative comparison between hFE and DVC strain localization patterns allowed the classification of the samples into 3 categories: bad (15 sections), semi (8), and good agreement (2).
The good correlations between BMC or hFE and experiment for structural parameters were similar to those obtained previously for the distal part of the radius. The failure zones determined by hFE corresponded to registration only in 8 % of the cases. We attribute these discrepancies to local elastic/plastic buckling effects that are not captured by the continuum-based FE approach exempt from strain softening. A way to improve strain localization hFE prediction would be to use longer distal segments with intact cortical shells, as done for the radius. To conclude, the used hFE scheme captures the elastic and yield response of the tibia sections reliably but not the subsequent failure process.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.