Experimentally realized physical-model-based frugal wave control in metasurface-programmable complex media

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-04-02 DOI:10.1038/s41467-024-46916-2
Jérôme Sol, Hugo Prod’homme, Luc Le Magoarou, Philipp del Hougne
{"title":"Experimentally realized physical-model-based frugal wave control in metasurface-programmable complex media","authors":"Jérôme Sol, Hugo Prod’homme, Luc Le Magoarou, Philipp del Hougne","doi":"10.1038/s41467-024-46916-2","DOIUrl":null,"url":null,"abstract":"<p>Metasurface-programmable radio environments are considered a key ingredient of next-generation wireless networks. Yet, identifying a metasurface configuration that yields a desired wireless functionality in an unknown complex environment was so far only achieved with closed-loop iterative feedback schemes. Here, we introduce open-loop wave control in metasurface-programmable complex media by estimating the parameters of a compact physics-based forward model. Our experiments demonstrate orders-of-magnitude advantages over deep-learning-based digital-twin benchmarks in terms of accuracy, compactness and required calibration examples. Strikingly, our parameter estimation also works without phase information and without providing measurements for all considered scattering coefficients. These unique generalization capabilities of our pure-physics model unlock unforeseen and previously inaccessible frugal wave control protocols that significantly alleviate the measurement complexity. For instance, we achieve coherent wave control (focusing or perfect absorption) and phase-shift-keying backscatter communications in metasurface-programmable complex media with intensity-only measurements. Our approach is also directly relevant to dynamic metasurface antennas, microwave-based signal processors and emerging in situ reconfigurable nanophotonic, optical and room-acoustical systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-46916-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metasurface-programmable radio environments are considered a key ingredient of next-generation wireless networks. Yet, identifying a metasurface configuration that yields a desired wireless functionality in an unknown complex environment was so far only achieved with closed-loop iterative feedback schemes. Here, we introduce open-loop wave control in metasurface-programmable complex media by estimating the parameters of a compact physics-based forward model. Our experiments demonstrate orders-of-magnitude advantages over deep-learning-based digital-twin benchmarks in terms of accuracy, compactness and required calibration examples. Strikingly, our parameter estimation also works without phase information and without providing measurements for all considered scattering coefficients. These unique generalization capabilities of our pure-physics model unlock unforeseen and previously inaccessible frugal wave control protocols that significantly alleviate the measurement complexity. For instance, we achieve coherent wave control (focusing or perfect absorption) and phase-shift-keying backscatter communications in metasurface-programmable complex media with intensity-only measurements. Our approach is also directly relevant to dynamic metasurface antennas, microwave-based signal processors and emerging in situ reconfigurable nanophotonic, optical and room-acoustical systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在元表面可编程复杂介质中实验实现基于物理模型的节俭波控制
元表面可编程无线电环境被认为是下一代无线网络的关键要素。然而,要在未知的复杂环境中确定能产生所需无线功能的元表面配置,迄今为止只能通过闭环迭代反馈方案来实现。在这里,我们通过估算基于物理的紧凑型前向模型参数,在元表面可编程复杂介质中引入开环波控制。我们的实验证明,与基于深度学习的数字孪生基准相比,我们在精度、紧凑性和所需校准示例方面都具有数量级的优势。引人注目的是,我们的参数估计在没有相位信息和不提供所有考虑的散射系数测量值的情况下也能工作。我们的纯物理模型具有这些独特的泛化能力,可以解锁以前无法实现的、不可预见的节俭波控制协议,从而大大降低测量的复杂性。例如,我们在只进行强度测量的元表面可编程复杂介质中实现了相干波控制(聚焦或完美吸收)和移相键控反向散射通信。我们的方法还与动态元表面天线、基于微波的信号处理器以及新兴的原位可重构纳米光子、光学和室内声学系统直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Transmembrane voltage-gated nanopores controlled by electrically tunable in-pore chemistry Testosterone exacerbates neutrophilia and cardiac injury in myocardial infarction via actions in bone marrow Author Correction: Triggering the 2022 eruption of Mauna Loa Catalytic transformation of carbon dioxide into seven-membered heterocycles and their domino transformation into bicyclic oxazolidinones Flat-band enhanced antiferromagnetic fluctuations and superconductivity in pressurized CsCr3Sb5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1