Long-term meteorology-adjusted and unadjusted trends of PM2.5 using the AirGAM model over Delhi, 2007–2022

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment: X Pub Date : 2024-04-01 DOI:10.1016/j.aeaoa.2024.100255
Chetna , Surendra K. Dhaka , Sam-Erik Walker , Vikas Rawat , Narendra Singh
{"title":"Long-term meteorology-adjusted and unadjusted trends of PM2.5 using the AirGAM model over Delhi, 2007–2022","authors":"Chetna ,&nbsp;Surendra K. Dhaka ,&nbsp;Sam-Erik Walker ,&nbsp;Vikas Rawat ,&nbsp;Narendra Singh","doi":"10.1016/j.aeaoa.2024.100255","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of meteorological variations on the long-term patterns of PM<sub>2.5</sub> in Delhi from 2007 to 2022 using the AirGAM 2022r1 model. Generalized Additive Modeling was employed to analyze meteorology-adjusted (removing the influence of inter-annual variations in meteorology) and unadjusted trends (trends without considering meteorology) while addressing auto-correlation. PM<sub>2.5</sub> levels showed a modest decline of 14 μg m<sup>−3</sup> unadjusted and 18 μg m<sup>−3</sup> meteorology-adjusted over the study period. Meteorological conditions and time factors significantly influenced trends. Temperature, wind speed, wind direction, humidity, boundary layer height, medium-height cloud cover, precipitation, and time variables including day-of-week, day-of-year, and overall time, were used as GAM model inputs. The model accounted for 55% of PM<sub>2.5</sub> variability (adjusted R-squared = 0.55). Day-of-week and medium-height cloud cover were non-significant, while other covariates were significant (p &lt; 0.05), except for precipitation (p &lt; 0.1). Wind speed (F-value: 98) showed the strongest correlation, followed by day-of-year (61), years (41.8), planetary boundary layer height (13.7), and temperature (13). Meteorological parameters exhibited significant long-term trends, except for temperature. Inter-annual meteorological variations minimally affected PM<sub>2.5</sub> trends. The model had a Pearson correlation of 0.72 with observed PM<sub>2.5</sub>, underestimating episodic peaks due to long-range transport. Partial dependencies revealed a non-linear PM<sub>2.5</sub> relationship with meteorology. Break-point detection identified two potential breakpoints in PM<sub>2.5</sub> time series. The first, on October 1, 2010, saw a significant increase from 103.4 to 162.6 μg m<sup>−3</sup>, potentially due to long-range transport. Comparing meteorology-adjusted and unadjusted trends can aid policymakers in understanding pollution change causes.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000224/pdfft?md5=e3269e49dafa2df5d0e802ea71b8e898&pid=1-s2.0-S2590162124000224-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162124000224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of meteorological variations on the long-term patterns of PM2.5 in Delhi from 2007 to 2022 using the AirGAM 2022r1 model. Generalized Additive Modeling was employed to analyze meteorology-adjusted (removing the influence of inter-annual variations in meteorology) and unadjusted trends (trends without considering meteorology) while addressing auto-correlation. PM2.5 levels showed a modest decline of 14 μg m−3 unadjusted and 18 μg m−3 meteorology-adjusted over the study period. Meteorological conditions and time factors significantly influenced trends. Temperature, wind speed, wind direction, humidity, boundary layer height, medium-height cloud cover, precipitation, and time variables including day-of-week, day-of-year, and overall time, were used as GAM model inputs. The model accounted for 55% of PM2.5 variability (adjusted R-squared = 0.55). Day-of-week and medium-height cloud cover were non-significant, while other covariates were significant (p < 0.05), except for precipitation (p < 0.1). Wind speed (F-value: 98) showed the strongest correlation, followed by day-of-year (61), years (41.8), planetary boundary layer height (13.7), and temperature (13). Meteorological parameters exhibited significant long-term trends, except for temperature. Inter-annual meteorological variations minimally affected PM2.5 trends. The model had a Pearson correlation of 0.72 with observed PM2.5, underestimating episodic peaks due to long-range transport. Partial dependencies revealed a non-linear PM2.5 relationship with meteorology. Break-point detection identified two potential breakpoints in PM2.5 time series. The first, on October 1, 2010, saw a significant increase from 103.4 to 162.6 μg m−3, potentially due to long-range transport. Comparing meteorology-adjusted and unadjusted trends can aid policymakers in understanding pollution change causes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2007-2022 年使用 AirGAM 模型计算的德里 PM2.5 经气象学调整和未经调整的长期趋势
本研究使用 AirGAM 2022r1 模型研究了气象变化对 2007 年至 2022 年德里 PM2.5 长期模式的影响。研究采用了广义相加模型来分析气象调整趋势(消除气象年际变化的影响)和未调整趋势(不考虑气象的趋势),同时解决了自相关性问题。在研究期间,PM2.5 水平略有下降,未调整为 14 μg m-3,气象调整为 18 μg m-3。气象条件和时间因素对趋势有显著影响。气温、风速、风向、湿度、边界层高度、中高云层、降水以及时间变量(包括周日、年日和总体时间)被用作 GAM 模型的输入。该模型解释了 55% 的 PM2.5 变异性(调整后的 R 方 = 0.55)。周日和中高云层不显著,而其他协变量显著(p < 0.05),降水除外(p < 0.1)。风速(F 值:98)显示出最强的相关性,其次是年月日(61)、年份(41.8)、行星边界层高度(13.7)和温度(13)。除温度外,其他气象参数都呈现出明显的长期趋势。年际气象变化对 PM2.5 趋势的影响很小。模型与观测到的 PM2.5 的皮尔逊相关性为 0.72,低估了长程飘移导致的偶发峰值。局部相关性表明,PM2.5 与气象存在非线性关系。断点检测确定了 PM2.5 时间序列中的两个潜在断点。第一个是 2010 年 10 月 1 日,从 103.4 μg m-3 显著增加到 162.6 μg m-3,这可能是由于长程飘移造成的。比较气象调整趋势和未调整趋势有助于决策者了解污染变化的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
期刊最新文献
Detection and analysis of ship emissions using single-particle mass spectrometry: A land-based field study in the port of rostock, Germany Comparison of global air pollution impacts across horizontal resolutions Manifesting the hidden pollutants: Quantifying emissions and environmental impact of petroleum refinery on PM2.5 Quantifying particulate matter emission rates from naturally ventilated dairy buildings by considering roof opening contributions Regional and seasonal impact of hydrogen propulsion systems on potential contrail cirrus cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1