{"title":"Computationally efficient solution of mixed integer model predictive control problems via machine learning aided Benders Decomposition","authors":"Ilias Mitrai, Prodromos Daoutidis","doi":"10.1016/j.jprocont.2024.103207","DOIUrl":null,"url":null,"abstract":"<div><p>Mixed integer Model Predictive Control (MPC) problems arise in the operation of systems where discrete and continuous decisions must be taken simultaneously to compensate for disturbances. The efficient solution of mixed integer MPC problems requires the computationally efficient online solution of mixed integer optimization problems, which are generally difficult to solve. In this paper, we propose a machine learning-based branch and check Generalized Benders Decomposition algorithm for the efficient solution of such problems. We use machine learning to approximate the effect of the complicating variables on the subproblem by approximating the Benders cuts without solving the subproblem, therefore, alleviating the need to solve the subproblem multiple times. The proposed approach is applied to a mixed integer economic MPC case study on the operation of chemical processes. We show that the proposed algorithm always finds feasible solutions to the optimization problem, given that the mixed integer MPC problem is feasible, and leads to a significant reduction in solution time (up to 97% or <span><math><mrow><mn>50</mn><mo>×</mo></mrow></math></span>) while incurring small error (in the order of 1%) compared to the application of standard and accelerated Generalized Benders Decomposition.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"137 ","pages":"Article 103207"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000477","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mixed integer Model Predictive Control (MPC) problems arise in the operation of systems where discrete and continuous decisions must be taken simultaneously to compensate for disturbances. The efficient solution of mixed integer MPC problems requires the computationally efficient online solution of mixed integer optimization problems, which are generally difficult to solve. In this paper, we propose a machine learning-based branch and check Generalized Benders Decomposition algorithm for the efficient solution of such problems. We use machine learning to approximate the effect of the complicating variables on the subproblem by approximating the Benders cuts without solving the subproblem, therefore, alleviating the need to solve the subproblem multiple times. The proposed approach is applied to a mixed integer economic MPC case study on the operation of chemical processes. We show that the proposed algorithm always finds feasible solutions to the optimization problem, given that the mixed integer MPC problem is feasible, and leads to a significant reduction in solution time (up to 97% or ) while incurring small error (in the order of 1%) compared to the application of standard and accelerated Generalized Benders Decomposition.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.