{"title":"Neural stochastic agent-based limit order book simulation with neural point process and diffusion probabilistic model","authors":"Zijian Shi, John Cartlidge","doi":"10.1002/isaf.1553","DOIUrl":null,"url":null,"abstract":"<p>Modern financial exchanges use an electronic limit order book (LOB) to store bid and ask orders for a specific financial asset. As the most fine-grained information depicting the demand and supply of an asset, LOB data are essential in understanding market dynamics. Therefore, realistic LOB simulations offer a valuable methodology for explaining the empirical properties of markets. Mainstream simulation models include agent-based models (ABMs) and stochastic models (SMs). However, ABMs tend not to be grounded on real historical data, whereas SMs tend not to enable dynamic agent-interaction. More recently, deep generative approaches have been successfully implemented to tackle these issues, whereas its black-box essence hampers the explainability and transparency of the system. To overcome these limitations, we propose a novel hybrid neural stochastic agent-based model (NS-ABM) for LOB simulation that incorporates a neural stochastic trader in agent-based simulation, characterised by (1) representing the aggregation of market events' logic by a neural stochastic background trader that is pre-trained on historical LOB data through a neural point process model; (2) learning the complex distribution for order-related attributes conditioned on various market indicators through a non-parametric diffusion probabilistic model; and (3) embedding the background trader in a multi-agent simulation platform to enable interaction with other strategic trading agents. We instantiate this hybrid NS-ABM model using the ABIDES platform. We first run the background trader in isolation and show that the simulated LOB can recreate a comprehensive list of stylised facts that demonstrate realistic market behaviour. We then introduce a population of ‘trend’ and ‘value’ trading agents, which interact with the background trader. We show that the stylised facts remain and we demonstrate order flow impact and financial herding behaviours that are in accordance with empirical observations of real markets.</p>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"31 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/isaf.1553","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Modern financial exchanges use an electronic limit order book (LOB) to store bid and ask orders for a specific financial asset. As the most fine-grained information depicting the demand and supply of an asset, LOB data are essential in understanding market dynamics. Therefore, realistic LOB simulations offer a valuable methodology for explaining the empirical properties of markets. Mainstream simulation models include agent-based models (ABMs) and stochastic models (SMs). However, ABMs tend not to be grounded on real historical data, whereas SMs tend not to enable dynamic agent-interaction. More recently, deep generative approaches have been successfully implemented to tackle these issues, whereas its black-box essence hampers the explainability and transparency of the system. To overcome these limitations, we propose a novel hybrid neural stochastic agent-based model (NS-ABM) for LOB simulation that incorporates a neural stochastic trader in agent-based simulation, characterised by (1) representing the aggregation of market events' logic by a neural stochastic background trader that is pre-trained on historical LOB data through a neural point process model; (2) learning the complex distribution for order-related attributes conditioned on various market indicators through a non-parametric diffusion probabilistic model; and (3) embedding the background trader in a multi-agent simulation platform to enable interaction with other strategic trading agents. We instantiate this hybrid NS-ABM model using the ABIDES platform. We first run the background trader in isolation and show that the simulated LOB can recreate a comprehensive list of stylised facts that demonstrate realistic market behaviour. We then introduce a population of ‘trend’ and ‘value’ trading agents, which interact with the background trader. We show that the stylised facts remain and we demonstrate order flow impact and financial herding behaviours that are in accordance with empirical observations of real markets.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.