KNIME workflows for applications in medicinal and computational chemistry

Ruchira Joshi , Zipeng Zheng , Palak Agarwal , Ma’mon M. Hatmal , Xinmin Chang , Paul Seidler , Ian S. Haworth
{"title":"KNIME workflows for applications in medicinal and computational chemistry","authors":"Ruchira Joshi ,&nbsp;Zipeng Zheng ,&nbsp;Palak Agarwal ,&nbsp;Ma’mon M. Hatmal ,&nbsp;Xinmin Chang ,&nbsp;Paul Seidler ,&nbsp;Ian S. Haworth","doi":"10.1016/j.aichem.2024.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) has huge potential to accelerate drug discovery, but challenges remain in implementing AI algorithms that can be used by the broad scientific community. Identification of molecular features and their subsequent use in training of machine learning models may permit prediction of new molecules with enhanced properties. Predictive modeling is particularly applicable to analysis of structure-activity relationships (SARs) and would be a useful tool in the hands of laboratory medicinal chemists. This requires a software platform that is chemically intuitive while providing the user with access to AI methods. The KNIME platform provides such an environment through inclusion of broad chemical toolsets and a user-friendly approach for utilization of machine learning for analysis of SAR data. Here, we illustrate use of KNIME for this purpose, with a focus on discovery of features of highly potent tau inhibitors from a series of structurally diverse polyphenols. Workflows are described that enable implementation of AI tools in KNIME for diverse SAR projects.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747724000216/pdfft?md5=2753f7e85fd445cdf8e68194d90fd743&pid=1-s2.0-S2949747724000216-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747724000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has huge potential to accelerate drug discovery, but challenges remain in implementing AI algorithms that can be used by the broad scientific community. Identification of molecular features and their subsequent use in training of machine learning models may permit prediction of new molecules with enhanced properties. Predictive modeling is particularly applicable to analysis of structure-activity relationships (SARs) and would be a useful tool in the hands of laboratory medicinal chemists. This requires a software platform that is chemically intuitive while providing the user with access to AI methods. The KNIME platform provides such an environment through inclusion of broad chemical toolsets and a user-friendly approach for utilization of machine learning for analysis of SAR data. Here, we illustrate use of KNIME for this purpose, with a focus on discovery of features of highly potent tau inhibitors from a series of structurally diverse polyphenols. Workflows are described that enable implementation of AI tools in KNIME for diverse SAR projects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KNIME 工作流程在药物化学和计算化学中的应用
人工智能(AI)在加速药物发现方面有着巨大的潜力,但在实施可供广大科学界使用的人工智能算法方面仍存在挑战。识别分子特征并随后将其用于训练机器学习模型,可以预测具有更强特性的新分子。预测建模尤其适用于结构-活性关系(SAR)分析,将成为实验室药物化学家手中的有用工具。这需要一个直观的化学软件平台,同时为用户提供人工智能方法。KNIME 平台提供了这样一个环境,它包含了广泛的化学工具集和用户友好型方法,可利用机器学习分析 SAR 数据。在此,我们以从一系列结构不同的多酚类化合物中发现高活性 tau 抑制剂的特征为重点,说明了 KNIME 在此方面的应用。本文介绍了 KNIME 中的人工智能工具在不同 SAR 项目中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
Molecular similarity: Theory, applications, and perspectives Large-language models: The game-changers for materials science research Conf-GEM: A geometric information-assisted direct conformation generation model Top 20 influential AI-based technologies in chemistry User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1