Andi Kurniawan, Z. Pramudia, Y. A. D. Susanti, Ilham Misbakun Al Zamzami, Tatsuya Yamamoto
{"title":"Comparative Biosorption Proficiency in Intact and Autoclaved Biofilm Matrices","authors":"Andi Kurniawan, Z. Pramudia, Y. A. D. Susanti, Ilham Misbakun Al Zamzami, Tatsuya Yamamoto","doi":"10.12911/22998993/183943","DOIUrl":null,"url":null,"abstract":"The urgent need for technological innovation to combat water pollution underscores the significance of biosorption as a potential solution. The success of biosorption hinges on the careful selection of a suitable biosorbent. Biofilms, composed of microbial communities, emerge as a promising alternative due to their expansive adsorption capacity and ready availability. In practical applications, biosorption is often executed at pollutant concentrations lethal to microbes. Consequently, comprehending the biosorption potential of biofilms with deceased microbes becomes imperative. Notably, biofilms with deceased microbes offer the added advantage of minimizing the risk of patho - genic microbial contamination. Despite this, studies are scarce comparing biosorption between intact biofilms and those with deceased microbes. This comparative analysis could enhance the feasibility of biofilms in biosorption as an eco-aquatic technology for alleviating aquatic pollution. This study aims to scrutinize the biosorption char - acteristics of intact biofilm (with living microbes) and autoclaved biofilm (with deceased microbes). The methods employed for analyzing biosorption characteristics encompass examining electric charge properties, FTIR spectra analysis, ion adsorption, and ion desorption. The model ions chosen for this study are K⁺ (monovalent ion) and Mg²⁺ (divalent ion). Results indicate that the biofilm’s electric charge properties and adsorption capacity remain relatively unchanged post-autoclaving. Based on these findings, it can be concluded that biofilms, whether intact or autoclaved, present substantial potential as biosorbents in the advancement of eco-aquatic technology for mitigating water pollution.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/183943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The urgent need for technological innovation to combat water pollution underscores the significance of biosorption as a potential solution. The success of biosorption hinges on the careful selection of a suitable biosorbent. Biofilms, composed of microbial communities, emerge as a promising alternative due to their expansive adsorption capacity and ready availability. In practical applications, biosorption is often executed at pollutant concentrations lethal to microbes. Consequently, comprehending the biosorption potential of biofilms with deceased microbes becomes imperative. Notably, biofilms with deceased microbes offer the added advantage of minimizing the risk of patho - genic microbial contamination. Despite this, studies are scarce comparing biosorption between intact biofilms and those with deceased microbes. This comparative analysis could enhance the feasibility of biofilms in biosorption as an eco-aquatic technology for alleviating aquatic pollution. This study aims to scrutinize the biosorption char - acteristics of intact biofilm (with living microbes) and autoclaved biofilm (with deceased microbes). The methods employed for analyzing biosorption characteristics encompass examining electric charge properties, FTIR spectra analysis, ion adsorption, and ion desorption. The model ions chosen for this study are K⁺ (monovalent ion) and Mg²⁺ (divalent ion). Results indicate that the biofilm’s electric charge properties and adsorption capacity remain relatively unchanged post-autoclaving. Based on these findings, it can be concluded that biofilms, whether intact or autoclaved, present substantial potential as biosorbents in the advancement of eco-aquatic technology for mitigating water pollution.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment