Low voltage resistance switching characteristics of Cu/MoS2/Cu/ITO devices

Shichang Li, Chaotao He, Haiyan Shu, Peng Chen
{"title":"Low voltage resistance switching characteristics of Cu/MoS2/Cu/ITO devices","authors":"Shichang Li, Chaotao He, Haiyan Shu, Peng Chen","doi":"10.1142/s0217984924503317","DOIUrl":null,"url":null,"abstract":"The resistive switching behavior is observed in the Cu/MoS2/Cu/ITO structures, which has been deposited by magnetron sputtering. With the increase in MoS2 thickness, the resistive switching behavior is gradually weakened. The optimal device with a MoS2 thickness of 120[Formula: see text]nm has a lower Set voltage and Reset voltage, where Set voltage is 0.14–0.3[Formula: see text]V and Reset voltage is −0.24[Formula: see text]V to −0.08[Formula: see text]V. The device also has a resistive switching ratio of up to 105 high resistance state/low resistance state, a data retention time over 104[Formula: see text]s, and can endure more than 103 cycles. As the limiting current increases, the resistance switching (RS) characteristics of devices with MoS2 thickness of 200[Formula: see text]nm at both positive and negative biases are improved. There is no RS behavior in ITO/MoS2/ITO devices fabricated by the same method, which indicates that sulfur vacancies have little effect on the RS characteristics of Cu/MoS2/Cu/ITO devices. Moreover, since the migration barrier and diffusion activation energy of Cu in MoS2 are lower than those of sulfur vacancy, combined with the data fitting structure, it is shown that the RS behavior is formed because Cu ions control the connectivity and fracture of conductive filaments through the diffusion and migration of MoS2 layer.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924503317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The resistive switching behavior is observed in the Cu/MoS2/Cu/ITO structures, which has been deposited by magnetron sputtering. With the increase in MoS2 thickness, the resistive switching behavior is gradually weakened. The optimal device with a MoS2 thickness of 120[Formula: see text]nm has a lower Set voltage and Reset voltage, where Set voltage is 0.14–0.3[Formula: see text]V and Reset voltage is −0.24[Formula: see text]V to −0.08[Formula: see text]V. The device also has a resistive switching ratio of up to 105 high resistance state/low resistance state, a data retention time over 104[Formula: see text]s, and can endure more than 103 cycles. As the limiting current increases, the resistance switching (RS) characteristics of devices with MoS2 thickness of 200[Formula: see text]nm at both positive and negative biases are improved. There is no RS behavior in ITO/MoS2/ITO devices fabricated by the same method, which indicates that sulfur vacancies have little effect on the RS characteristics of Cu/MoS2/Cu/ITO devices. Moreover, since the migration barrier and diffusion activation energy of Cu in MoS2 are lower than those of sulfur vacancy, combined with the data fitting structure, it is shown that the RS behavior is formed because Cu ions control the connectivity and fracture of conductive filaments through the diffusion and migration of MoS2 layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜/MoS2/铜/ITO 器件的低压电阻开关特性
在通过磁控溅射沉积的 Cu/MoS2/Cu/ITO 结构中观察到了电阻开关行为。随着 MoS2 厚度的增加,电阻开关行为逐渐减弱。MoS2厚度为120[式:见正文]nm的最佳器件具有较低的设定电压和复位电压,其中设定电压为0.14-0.3[式:见正文]V,复位电压为-0.24[式:见正文]V至-0.08[式:见正文]V。该器件的高阻态/低阻态电阻开关比高达 105,数据保持时间超过 104[公式:见正文]秒,可承受超过 103 次循环。随着极限电流的增加,MoS2 厚度为 200[式中:见正文]纳米的器件在正负偏压下的电阻开关(RS)特性都得到了改善。用相同方法制造的 ITO/MoS2/ITO 器件没有 RS 行为,这表明硫空位对 Cu/MoS2/Cu/ITO 器件的 RS 特性影响很小。此外,由于铜在 MoS2 中的迁移势垒和扩散活化能均低于硫空位,结合数据拟合结构,表明 RS 行为的形成是由于铜离子通过 MoS2 层的扩散和迁移控制了导电丝的连通和断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joule heating effects on triple diffusive free convective MHD flow over a convective surface: A Lie-group transformation analysis Preparation, structure and spectral characteristics of Zinc tellurite glasses system doped with different concentrations of Tm3+ Impacts of activation energy and electroosmosis on peristaltic motion of micropolar Newtonian nanofluid inside a microchannel Viscous dissipation and Joule heating in case of variable electrical conductivity Carreau–Yasuda nanofluid flow in a complex wavy asymmetric channel through porous media Stability analysis and retrieval of new solitary waves of (2+1)- and (3+1)-dimensional potential Kadomtsev–Petviashvili and B-type Kadomtsev–Petviashvili equations using auxiliary equation technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1